http://www.bnuoj.com/bnuoj/problem_show.php?pid=1053

【题意】:基本上就是求直线与圆的交点坐标

【题解】:这种题我都比较喜欢用二分,三分做,果然可以完爆,哈哈,特有成就感的说。。。

【code】:

 #include <iostream>
#include <stdio.h>
#include <math.h>
#include <algorithm> using namespace std;
#define eps 1e-12 struct Point
{
double x,y;
Point(){}
Point(double dx,double dy)
{
x = dx;
y = dy;
}
}; double distance(double x1,double y1,double x2,double y2) //求距离
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
} double distance2(double x1,double y1,double x2,double y2) //求距离的平方
{
return ((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
} double area2(double x1, double y1, double x2, double y2, double x3,double y3) //两倍三角形面积
{
double area;
area = fabs(x1*y2+x2*y3+x3*y1-x3*y2-x1*y3-x2*y1);
return area;
} int isEqual(double a,double b) //判断两浮点数是否相等
{
if(fabs(a-b)>1e-) return ;
return ;
} Point bs(double x1,double y1,double x2,double y2,double x3,double y3,double R) //二分查找交点
{
double l=,r=,mid,x,y;
while(l<=r)
{
mid = (l+r)/;
x = x1 + mid*(x2-x1);
y = y1 + mid*(y2-y1);
double temp =distance(x,y,x3,y3);
if(temp<R) //与半径的距离为二分点
{
l=mid+eps;
}
else
{
r=mid-eps;
}
}
return Point(x,y);
} int main()
{
double Cx,Cy,R;
double Px,Py;
double Qx,Qy;
scanf("%lf%lf%lf",&Cx,&Cy,&R);
scanf("%lf%lf",&Px,&Py);
scanf("%lf%lf",&Qx,&Qy);
double area = area2(Px,Py,Qx,Qy,Cx,Cy);
double disPQ = distance(Px,Py,Qx,Qy);
double dis = area/disPQ; //用面积除以底求得三角形的高,即点到直线的距离
if(dis>R||isEqual(dis,R))
{
puts("-1");
return ;
}
double x1,y1;
x1 = Px-Qx;
y1 = Py-Qy;
double x=,y=,k=,lx,rx,ry,ly;
if(isEqual(Px,Qx)) //如果px==qx,不存在斜率
{
x = Px;
y = (Cx-x)*x1/y1+Cy;
lx = x;
ly = Cy-R;
rx = x;
ry = Cy+R;
}
else if(isEqual(Py,Qy)) //存在斜率为1
{
y = Py;
x = (Cy-y)*y1/x1+Cx;
ly = Py;
lx = Px-R;
ry = Py;
rx = Px+R;
}
else //斜率在0-1之间
{
y = (Cy*y1/x1+Cx-Px+Py*(Qx-Px)/(Qy-Py))/(y1/x1+(Qx-Px)/(Qy-Py));
x = (Cy-y)*y1/x1+Cx;
lx = Cx - R;
ly = (Qy-Py)/(Qx-Px)*(lx-Px)+Py;
rx = Cx + R;
ry = (Qy-Py)/(Qx-Px)*(rx-Px)+Py;
}
Point p1 = bs(x,y,lx,ly,Cx,Cy,R);
Point p2 = bs(x,y,rx,ry,Cx,Cy,R);
double ans = distance2(p1.x,p1.y,Px,Py)+distance2(p2.x,p2.y,Px,Py);
printf("%.3lf\n",ans);
return ;
}

bnuoj 1053 EASY Problem (计算几何)的更多相关文章

  1. POJ 2826 An Easy Problem?! --计算几何,叉积

    题意: 在墙上钉两块木板,问能装多少水.即两条线段所夹的中间开口向上的面积(到短板的水平线截止) 解法: 如图: 先看是否相交,不相交肯定不行,然后就要求出P与A,B / C,D中谁形成的向量是指向上 ...

  2. HDU 5572 An Easy Physics Problem (计算几何+对称点模板)

    HDU 5572 An Easy Physics Problem (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5572 Descripti ...

  3. poj2826 An Easy Problem?!【计算几何】

    含[三点坐标计算面积].[判断两线段是否有交点].[求线段交点]模板   An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Tot ...

  4. An Easy Problem?!(细节题,要把所有情况考虑到)

    http://poj.org/problem?id=2826 An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  5. UVA-11991 Easy Problem from Rujia Liu?

    Problem E Easy Problem from Rujia Liu? Though Rujia Liu usually sets hard problems for contests (for ...

  6. An easy problem

    An easy problem Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  7. UVa 11991:Easy Problem from Rujia Liu?(STL练习,map+vector)

    Easy Problem from Rujia Liu? Though Rujia Liu usually sets hard problems for contests (for example, ...

  8. POJ 2826 An Easy Problem?!

    An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7837   Accepted: 1145 ...

  9. hdu 5475 An easy problem(暴力 || 线段树区间单点更新)

    http://acm.hdu.edu.cn/showproblem.php?pid=5475 An easy problem Time Limit: 8000/5000 MS (Java/Others ...

随机推荐

  1. kafka集群安装与配置

    一.集群安装 1. Kafka下载: 可以从kafka官方网站(http://kafka.apache.org)上找到下载地址,再wgetwget http://mirrors.cnnic.cn/ap ...

  2. unity3d鼠标经过物体时变颜色,离开时恢复

    using UnityEngine; using System.Collections; public class MouseEvent_Color : MonoBehaviour { //物体初始颜 ...

  3. HDOJ2009求数列的和

    求数列的和 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  4. Agile.Net 组件式开发平台 - 平台系统介绍

    平台介绍 Agile.Net 组件式开发平台是一款针对企业级产品的开发框架,平台架构基于SOA服务体系,多层组件式架构打造.平台提供企业应用开发所需的诸如ORM.IOC.WCF.EBS.SOA等分布式 ...

  5. Linux内核中影响tcp三次握手的一些协议配置

    在Linux的发行版本中,都存在一个/proc/目录,有的也称它为Proc文件系统.在 /proc 虚拟文件系统中存在一些可调节的内核参数.这个文件系统中的每个文件都表示一个或多个参数,它们可以通过 ...

  6. TabbarItem超炫小动画

    本文转载自 不灭的小灯灯  的博客 Tabbar点击时候超炫小动画 感谢这位大神的分享! 对UITabBarController上TabBar按钮动画详细介绍-->>保证你有意外收获,如有 ...

  7. HTML+CSS学习笔记(3)- 认识标签(2)

    HTML+CSS学习笔记(3)- 认识标签(2) 1.使用ul,添加新闻信息列表 在浏览网页时,你会发现网页上有很多信息的列表,如新闻列表.图片列表, 这些列表就可以使用ul-li标签来完成.ul-l ...

  8. 捕获异常 winform

    可以捕获winform中的异常写到文本中 <p>可以捕获winform中的异常写到文本中</p> <div class="cnblogs_code" ...

  9. Visual Studio的MethMVVM

    MethMVVM介绍: Visual Studio Gallery是微软针对VisualStudio扩展提供的一种解决方案,在Visual Studio Gallery你能够找到各种不同主题的解决方案 ...

  10. 【转载】干货来袭!Linux小白最佳实践:《超容易的Linux系统管理入门书》(连载七)LAMP集成安装

    学Linux做程序开发也好,做系统管理也好,做网络管理员也好,做系统运维也好,不会LAMP和LNMP,那就等于连皮毛都不会!本篇是文字版的LAMP集成安装,下次连载我们要介绍LNMP的文字版安装.有喜 ...