数论 Day 13
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理)
前言
又是一脸懵逼的一天。
正文
按照道理来说,我们应该先做一个介绍。
中国剩余定理
中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式。

扩展中国剩余定理
在一般情况下,要求任两个数互质这个条件太苛刻了,CRT派不上用场,我们需要一个更具普遍性的结论,这就是EX-CRT。虽然是称为EX-CRT,但这个定理并没有直接用到CRT的结论。
typedef long long ll;
;
// m为模数组,a为余数数组,0~n-1
ll m[maxn], a[maxn];
ll exgcd(ll a, ll b, ll &x, ll &y) {
) {
x = ; y = ;
return a;
}
ll ans = exgcd(b, a % b, y, x);
y -= a / b * x;
return ans;
}
ll excrt() {
ll lcm = m[], last_a = a[];
; i < n; i++) {
ll lcm_a = ((a[i] - last_a) % m[i] + m[i]) % m[i];
ll k = lcm, x, y;
ll gcd = exgcd(lcm, m[i], x, y);
ll mod = m[i] / gcd;
x = (x * lcm_a / gcd % mod + mod) % mod;
lcm = lcm / gcd * m[i], last_a = (last_a + k * x) % lcm;
}
return (last_a % lcm + lcm) % lcm;
}
卢卡斯定理
卢卡斯定理是关于组合数和同余的定理,它表明当p为素数时:

因为当m>n时,二项式系数为0,那么二项式系数即组合数能被p整除等价于在p进制下,存在某一位m的数值大于对应的n的数值。
基于母函数可以简单证明这个定理。

可以用除法和取模方便的在循环中求出各个系数,代码如下:
typedef long long ll;
;
;
void init() {
F[] = ;
; i < maxn; i++)
F[i] = i * F[i - ] % mod;
}
ll qpow(ll a, ll b) {
ll ans = ;
while(b) {
) ans = ans * a % mod;
b >>= ; a = a * a % mod;
}
return ans;
}
ll lucas(ll N, ll M) {
ll ans = ;
while(N & M) {
ll n = N % mod, m = M % mod;
;
ans = ans * F[a] % mod * qpow(F[m] * F[n - m] % mod, mod - ) % mod;
N /= p; M /= p;
}
return ans;
}
扩展卢卡斯定理
卢卡斯定理同样不能处理模数不是素数的情况,这时便需要扩展卢卡斯定理。我们一步步分析如何求解模数不是素数的组合数问题。
完整代码如下:
typedef long long ll;
;
ll n, m, p;
ll qpow(ll a, ll b, ll mod) {
ll ans = ;
while(b) {
) ans = ans * a % mod;
b >>= ; a = a * a % mod;
}
return ans;
}
ll fac(ll n, ll p, ll pk) {
;
ll ans = ;
; i < pk; i++)
if (i % p) ans = ans * i % pk;
ans = qpow(ans, n / pk, pk);
int npk = n % pk;
; i <= npk; i++)
if (i % p) ans = ans * i % pk;
return ans * fac(n / p, p, pk) % pk;
}
ll exgcd(ll a, ll b, ll &x, ll &y) {
) {
x = ; y = ;
return a;
}
ll ans = exgcd(b, a % b, y, x);
y -= a / b * x;
return ans;
}
ll inv(ll a, ll p) {
, p);
}
ll C(ll n, ll m, ll p, ll pk) {
;
ll fn = fac(n, p, pk),
fm = fac(m, p, pk),
fn_m = fac(n - m, p, pk),
cnt = ;
for (ll i = n; i; i /= p)
cnt += i / p;
for (ll i = m; i; i /= p)
cnt -= i / p;
for (ll i = n - m; i; i /= p)
cnt -= i / p;
return fn * inv(fm * fn_m % pk, pk) % pk * qpow(p, cnt, pk) % pk;
}
ll a[N], mod[N]; // a[]是通过卢卡斯分解出来的组合数值,m[]是对应的模数
int cnt; // 质因数的种数
ll CRT() {
ll M = , ans = ;
; i < cnt; i++)
M *= mod[i];
; i < cnt; i++)
ans = (ans + a[i] * (M / mod[i]) % M * inv(M / mod[i], mod[i]) % M) % M;
return ans;
}
ll exlucas(ll n, ll m, ll p) {
ll sqrtp = sqrt(p + 0.5);
; p > && i <= sqrtp; i++) {
ll pk = ;
)
p /= i, pk *= i;
)
a[cnt] = C(n, m, i, pk), mod[cnt++] = pk;
}
)
a[cnt] = C(n, m, p, p), mod[cnt++] = p;
return CRT();
}
题目
其实这篇博客到这里几乎就可以没了,因为我。。。爆0了
难啊。。。
A题
Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak in each period of a cycle. At the peak of a cycle, a person performs at his or her best in the corresponding field (physical, emotional or mental). For example, if it is the mental curve, thought processes will be sharper and concentration will be easier. Since the three cycles have different periods, the peaks of the three cycles generally occur at different times. We would like to determine when a triple peak occurs (the peaks of all three cycles occur in the same day) for any person. For each cycle, you will be given the number of days from the beginning of the current year at which one of its peaks (not necessarily the first) occurs. You will also be given a date expressed as the number of days from the beginning of the current year. You task is to determine the number of days from the given date to the next triple peak. The given date is not counted. For example, if the given date is 10 and the next triple peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given date, you should give the number of days to the next occurrence of a triple peak. This problem contains multiple test cases! The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks. The output format consists of N output blocks. There is a blank line between output blocks. Input You will be given a number of cases. The input for each case consists of one line of four integers p, e, i, and d. The values p, e, and i are the number of days from the beginning of the current year at which the physical, emotional, and intellectual cycles peak, respectively. The value d is the given date and may be smaller than any of p, e, or i. All values are non-negative and at most 365, and you may assume that a triple peak will occur within 21252 days of the given date. The end of input is indicated by a line in which p = e = i = d = -1. Output For each test case, print the case number followed by a message indicating the number of days to the next triple peak, in the form: Case 1: the next triple peak occurs in 1234 days. Use the plural form ``days'' even if the answer is 1. Sample Input 1 0 0 0 0 0 0 0 100 5 20 34 325 4 5 6 7 283 102 23 320 203 301 203 40 -1 -1 -1 -1 Sample Output Case 1: the next triple peak occurs in 21252 days. Case 2: the next triple peak occurs in 21152 days. Case 3: the next triple peak occurs in 19575 days. Case 4: the next triple peak occurs in 16994 days. Case 5: the next triple peak occurs in 8910 days. Case 6: the next triple peak occurs in 10789 days.
Biorhythms HDU-1370
题意
一个人有三个值(不知道是啥),然后每个值每到一个周期就会到达顶峰,求从d天开始,他三个值都到达顶峰是第几天。
思路
然而,三个周期都是质数,显然用的是中国剩余定理(CRT)
抽象一点来说,就是给你三个同余方程。
代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
typedef long long ll;
ll exgcd(ll a, ll b, ll &x, ll &y)
{
if(!b)
{
x = ;
y = * ;
return a;
}
ll d = exgcd(b, a % b, x, y);
ll t = x;
x = y;
y = t - a / b * y;
return d;
}
ll inv(ll a,ll n)
{
ll y, d, x, fre, pf, qw;
/*cnt't*/
fre = pf = qw = ;
fre++, pf++, qw++;
/*can't*/
d = exgcd(a,n,x,y);
? (x + n) % n:-;
}
ll CN(ll leo, ll *a, ll *m)
{
ll M = , ret = ;
; i < leo; i ++)
M *= m[i];
; i < leo; i ++)
{
ll w = M / m[i];
ret = (ret + w * inv(w, m[i]) * a[i]) % M;
}
return (ret + M) % M;
}
int main()
{
ll t = , d;
ll a[],m[];
m[] = ;
m[] = ;
m[] = ;
/*GN*/
ll tea;
scanf("%lld", &tea);
while(true)
{
scanf(], &a[], &a[], &d);
] == - && a[] == - && a[] == - && d == -)
break;
ll ans = CN(, a, m);
if(ans <= d)
ans += ;
ans -= d;
printf("Case %lld: the next triple peak occurs in %lld days.\n", t, ans);
t++;
}
;
}
B题
F(x) is a polynomial in x with integer coefficients, here F(x) = (1+x)^a1 + (1+x)^a2 + ... + (1+x)^am. Given a1, a2, ... , am, find number of odd coefficients of F(x). Input The first line contains a single positive integer T( T <= 10000 ), indicates the number of test cases. For each test case: First line contains an integer N(1 <= N <= 15). Second line contains N integers a1, a2, ..., am ( 0 <= ai <= 2^45 ) Output For each test case: output the case number as shown and an the odd coefficients of F(x). Sample Input 4 1 1 1 3 2 1 3 3 1 2 3 Sample Output Case #1: 2 Case #2: 4 Case #3: 2 Case #4: 2 Hint Case #3: (1+x) + (1+x)^3 = 2 + 4x + 3x^2 + x^3. it contains 2 odd coefficients. Case #4: (1+x) + (1+x)^2 + (1+x)^3 = 3 + 6x + 4x^2 + x^3. it contains 2 odd coefficients.
Big Coefficients HDU-3929
题意
略
思路
显然是用卢卡斯,但我不知道为哈
未完待续
数论 Day 13的更多相关文章
- 洛谷P1621 集合 [2017年6月计划 数论13]
P1621 集合 题目描述 现在给你一些连续的整数,它们是从A到B的整数.一开始每个整数都属于各自的集合,然后你需要进行一下的操作: 每次选择两个属于不同集合的整数,如果这两个整数拥有大于等于P的公共 ...
- Educational Codeforces Round 13 D:Iterated Linear Function(数论)
http://codeforces.com/contest/678/problem/D D. Iterated Linear Function Consider a linear function f ...
- CodeForces 300C --数论
A - A Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- [Swust OJ 1125]--又见GCD(数论,素数表存贮因子)
题目链接:http://acm.swust.edu.cn/problem/1125/ Time limit(ms): 1000 Memory limit(kb): 65535 Descriptio ...
- ARZhu的数论初步
数论 2017年3月4日02:11:35 gcd 1. 原理: gcd( a, b ) = gcd( b, a - b ) -> gcd( a, b ) = gcd( b, b % a ) 2. ...
- HDU 1013.Digital Roots【模拟或数论】【8月16】
Digital Roots Problem Description The digital root of a positive integer is found by summing the dig ...
- 2017年浙江理工大学程序设计竞赛校赛 题解&源码(A.水, D. 简单贪心 ,E.数论,I 暴力)
Problem A: 回文 Time Limit: 1 Sec Memory Limit: 128 MB Submit: 1719 Solved: 528 Description 小王想知道一个字 ...
- [自用]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 ...
- 数论ex
数论ex 数学学得太差了补补知识点or复习 Miller-Rabin 和 Pollard Rho Miller-Rabin 前置知识: 费马小定理 \[ a^{p-1}\equiv 1\pmod p, ...
随机推荐
- java随笔之接口
/* * 接口大致上可以分为:哑接口,抽象接口,接口类 * 哑接口:就是public,protected(注意protect有包权限,只有本包才开放接口)方法 * 抽象接口:就是哑接口变为抽象方法,在 ...
- 【0809 | Day 12】可变长参数/函数的对象/函数的嵌套/名称空间与作用域
可变长参数 一.形参 位置形参 默认形参 二.实参 位置实参 关键字实参 三.可变长参数之* def func(name,pwd,*args): print('name:',name,'pwd:',p ...
- 三层架构(MVC)实现简单登陆注册验证(含验证码)
前言在我的上一篇微博里我已经提出了登陆的方法,当时我采取的是纯servlet方式,因为当时刚接触到servlet,正好网上没有这方面的全面讲解,所以我就发飙了.不过在现实生产中我们大多采用的三层架构. ...
- Flink 源码解析 —— 如何获取 JobGraph?
JobGraph https://t.zsxq.com/naaMf6y 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭建 F ...
- 分布式ID系列(5)——Twitter的雪法算法Snowflake适合做分布式ID吗
介绍Snowflake算法 SnowFlake算法是国际大公司Twitter的采用的一种生成分布式自增id的策略,这个算法产生的分布式id是足够我们我们中小公司在日常里面的使用了.我也是比较推荐这一种 ...
- 通过Blazor使用C#开发SPA单页面应用程序(3)
今天我们来看看Blazor开发的一些基本知识. 一.Blazor组件结构 Blazor中组件的基本结构可以分为3个部分,如下所示: //Counter.razor //Directives secti ...
- 洛谷 P3195 [HNOI2008]玩具装箱TOY
题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求 ...
- vs2013 在按F5调试时,总是提示 “项目已经过期”的解决方案
这个是由于缺少某些文件(如.h,xxx.icon),或者文件时间不对 引起的. 如图在工具选项设置 最小为 “诊断”. 然后编译一下,会提示 xxx过期,确认下即可.
- Python项目中的单元测试
引入 单元测试负责对最小的软件设计单元(模块)进行验证,unittest是Python自带的单元测试框架. 单元测试与功能测试都是日常开发中必不可少的部分,本文演示了Python中unittest单元 ...
- 详解慢查询日志的相关设置及mysqldumpslow工具
概述 mysql慢查询日志是mysql提供的一种日志记录,它是用来记录在mysql中相应时间超过阈值的语句,就是指运行时间超过long_query_time值的sql,会被记录在慢查询日志中.long ...