Appleman and Tree

题解:

定义dp[u][1] 为以u的子树范围内,u这个点已经和某个黑点相连的方案数。

dp[u][0] 为在u的子树范围内, u这个点还未和某个黑点相连的方案数。

转移方程:

如果 u为黑点, dp[u][0] = 0, dp[u][1] = 1, 然后考虑从下面转移过来, dp[u][1] *= dp[v][0] + dp[v][1].

也就是说, 如果 v 点为黑,则切断这个边, 如果v点为白,则不切断, 即对于v来说,每个情况,切边的情况也只有一种, 不同的v的方案数相互独立。

如果 u为白点, dp[u][0] = 1, dp[u][1] = 1, 考虑转移 dp[u][0] *= dp[v][0] + dp[v][1], dp[u][1] += dp[v][1] * (除v以外的子树(dp[z][1] + dp[z][0])乘积 。

对于dp[u][0]来说,和上面的道理一样。

对于dp[u][1]来说,枚举和下面哪一个黑点连边,然后这个点对于其他的v来说就相当于一个黑点,转移的方程就是和 u 是黑点的道理一样了。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 1e5 + ;
vector<int> vc[N];
int dp[N][];
int pre[N], suf[N];
int a[N];
void dfs(int u){
if(a[u] == ) {
dp[u][] = ; dp[u][] = ;
for(int v : vc[u]){
dfs(v);
dp[u][] = (1ll * dp[u][] * (dp[v][] + dp[v][])) % mod;
}
}
else{
dp[u][] = ; dp[u][] = ;
int t = vc[u].size();
for(int v : vc[u]){
dfs(v);
}
for(int i = ; i < t; ++i){
int v = vc[u][i];
suf[i+] = pre[i+] = (dp[v][]+dp[v][]) % mod;
}
pre[] = ; suf[t+] = ;
for(int i = ; i <= t; ++i)
pre[i] = 1ll * pre[i] * pre[i-] % mod;
for(int i = t; i >= ; --i)
suf[i] = 1ll * suf[i] * suf[i+] % mod;
dp[u][] = pre[t];
for(int i = ; i <= t; ++i){
int v = vc[u][i-];
dp[u][] = (dp[u][] + 1ll * dp[v][] * (1ll * pre[i-] * suf[i+]%mod))% mod;
}
}
}
int main(){
int n, o;
scanf("%d", &n);
for(int i = ; i <= n; ++i){
scanf("%d", &o);
vc[o+].pb(i);
}
for(int i = ; i <= n; ++i)
scanf("%d", &a[i]);
dfs();
printf("%d\n", dp[][]);
return ;
}

CodeForces 416 B Appleman and Tree DP的更多相关文章

  1. Codeforces 486D Valid Sets:Tree dp【n遍O(n)的dp】

    题目链接:http://codeforces.com/problemset/problem/486/D 题意: 给你一棵树,n个节点,每个节点的点权为a[i]. 问你有多少个连通子图,使得子图中的ma ...

  2. Codeforces 461B Appleman and Tree(木dp)

    题目链接:Codeforces 461B Appleman and Tree 题目大意:一棵树,以0节点为根节点,给定每一个节点的父亲节点,以及每一个点的颜色(0表示白色,1表示黑色),切断这棵树的k ...

  3. Codeforces 461B. Appleman and Tree[树形DP 方案数]

    B. Appleman and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  4. Codeforces Round #263 (Div. 2) D. Appleman and Tree(树形DP)

    题目链接 D. Appleman and Tree time limit per test :2 seconds memory limit per test: 256 megabytes input ...

  5. CF461B Appleman and Tree (树DP)

    CF462D Codeforces Round #263 (Div. 2) D Codeforces Round #263 (Div. 1) B B. Appleman and Tree time l ...

  6. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  7. CF461B Appleman and Tree

    CF461B Appleman and Tree 传送门 一道比较容易的树形DP. 考虑用\(dp[i][1]\)代表将\(i\)分配给\(i\)的子树内黑点的方案数,\(dp[i][0]\)代表将\ ...

  8. codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)

    codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...

  9. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

随机推荐

  1. 【Android Studio】E/memtrack: Couldn't load memtrack module (No such file or directory)【待解决】

    Android Studio 又遇到了问题--如下: 06-21 07:27:57.855 3232-3232/? E/memtrack: Couldn't load memtrack module ...

  2. 【Android Studio】Frameworks detected: Android framework is detected in the project Configure

    刚开始在 Mac 上用 Android Studio, 打开第一个项目就遇到了问题,描述如下: 上午9:: Frameworks detected: Android framework is dete ...

  3. 【pycharm】pycharm远程连接服务器的Python解释器,远程编写代码!!!

    今天讲讲如何用pycharm连接远程服务器,使用远程服务器的Python解释器,比如说是你公司的服务器,在家里就可以编写或修改项目的代码! 第一步,先找到服务器上的ip地址 Linux查看IP命令:i ...

  4. Js面向对象原型~构造函数

    脑袋一团浆糊,但希望写点啥,所有就有了这篇博文了,抱歉哦....开始吧!!!!  什么是构造函数??   所谓"构造函数",其实就是一个普通函数,但是内部使用了this变量.对构造 ...

  5. HttpsUtils

    package io.renren.modules.jqr.util; import java.io.BufferedReader; import java.io.InputStream; impor ...

  6. Windows上的Linux容器

    翻译自:https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-contai ...

  7. hadoop学习(一)----概念和整体架构

    程序员就得不停地学习啊,故步自封不能满足公司的业务发展啊!所以我们要有搞事情的精神.都说现在是大数据的时代,可以我们这些码农还在java的业务世界里面转悠呢.好不容易碰到一个可能会用到大数据技术的场景 ...

  8. loadrunner中的ie浏览器无法使用

    我的loadrunner是12.55版本的,windows10系统 在我们学习loadrunner的过程中,会出现下面一个问题: 在录制脚本时,loadrunner中的ie浏览器无法使用处于飘红状态. ...

  9. Redhat Linux 系统上安装JDK 1.7

    作者:潇湘隐者 出处:http://www.cnblogs.com/kerrycode/ 步骤1:下载JDK 1.7 安装包  JDK 1.7 下载地址:http://www.oracle.com/t ...

  10. 在canvas中使用其他HTML元素

    做一个功能如下图,随机生成100个大小.颜色随机的小球.点击开始运动的时候,小球开始运动,然后点击停止运动的时候,小球停止运动. 点击旁边的白色或者黑色,则背景颜色变为相应的颜色. HTML部分: & ...