http://cogs.pro:8080/cogs/problem/problem.php?pid=vNQJJVUVj

再写个数学水题,其实lucas适用于m,n比较大而p比较小的情况。

题意:给出两个数n,m,求出C(n,m) mod 1000000007的值 (n <= 2 *1e5)

思路:先预处理出组合数,其中逆元用快速幂求,因为如果p是质数,a^p = a (mod p),a的逆元就是a^(p-2)。然后直接lucas就完了。

 #include<bits/stdc++.h>
#define fo(x) freopen(x".in","r",stdin); freopen(x".out","w",stdout);
using namespace std;
typedef long long ll; ll pow_mod(ll a,ll x,ll p){
ll ret = ;
while(x){
if(x&) ret = ret*a%p;
a = a*a%p;
x >>= ;
}
return ret;
} ll C(ll n,ll m, ll p){
if(m==) return ;
if(m>n-m) m = n-m;
ll up = ,down = ;
for(int i=;i<=m;i++){
up = (up*(n-i+))%p;
down = down*i%p;
}
return up*pow_mod(down,p-,p)%p;
} ll lucas(ll a,ll b,ll p){
if(b==) return ;
return C(a%p,b%p,p)*lucas(a/p,b/p,p);
} int main(){
fo("combination");
ll n,m,p=;
cin>>n>>m;
cout<<lucas(n,m,p)<<endl;
return ;
}

cogs2823求组合数(lucas定理的更多相关文章

  1. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  2. lucas求组合数C(n,k)%p

    Saving Beans http://acm.hdu.edu.cn/showproblem.php?pid=3037 #include<cstdio> typedef __int64 L ...

  3. 51nod1119(除法取模/费马小定理求组合数)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不 ...

  4. HDU 5852 Intersection is not allowed!(LGV定理行列式求组合数)题解

    题意:有K个棋子在一个大小为N×N的棋盘.一开始,它们都在棋盘的顶端,它们起始的位置是 (1,a1),(1,a2),...,(1,ak) ,它们的目的地是 (n,b1),(n,b2),...,(n,b ...

  5. lucas 定理学习

    大致意思就是求组合数C(n , m) % p的值, p为一个偶数 可以将组合数的n 和 m都理解为 p 进制的表示 n  = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p ...

  6. [Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)

    题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Descriptio ...

  7. [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理

    方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll< ...

  8. hdu 5446(2015长春网络赛J题 Lucas定理+中国剩余定理)

    题意:M=p1*p2*...pk:求C(n,m)%M,pi小于10^5,n,m,M都是小于10^18. pi为质数 M不一定是质数 所以只能用Lucas定理求k次 C(n,m)%Pi最后会得到一个同余 ...

  9. [CodeVs1515]跳(lucas定理+费马小定理)

    嘿嘿嘿好久没写数学题了,偶尔看到一道写一写... 题目大意:一个(n+1)*(m+1)[0<=n, m<=10^12,n*m<=10^12]的矩阵,C(0,0)=1,C(x,y)=C ...

随机推荐

  1. 入门MySQL——基础语句篇

    前言:  前面几篇文章,我们介绍了MySQL的基础概念及逻辑架构.相信你现在应该有了自己的一套MySQL环境,接下来我们就可以开始练习MySQL了.本文将从MySQL最基础的语句出发,为你展示出创建及 ...

  2. indexedDB添加,删除,获取,修改

    [toc] 在chrome(版本 70.0.3538.110)测试正常 编写涉及:css, html, js 在线演示codepen html代码 <h1>indexedDB</h1 ...

  3. Spring 集成Kafka(完整版)

    前面的文章我们已经完成了Kafka基于Zookeeper的集群的搭建了.Kafka集群搭建请点我.记过几天的研究已经实现Spring的集成了.本文重点 jar包准备 集成是基于spring-integ ...

  4. h5微信浏览器复制粘贴--ios兼容问题的解决方法(clipboard.js插件)

    前段时间在做微信h5的时候,遇到了ios兼容,使用clipboard.js插件完美解决 下载地址:下载地址: https://github.com/zenorocha/clipboard.js cnd ...

  5. 解决微信二次分享失败--后面被加上from=singlemessage&isappinstalled=0的解决方案

    首次分享成功,点开后再次分享或第三次分享就失败了 1.检查你分享的链接,看是否多了两个参数,微信分享会根据分享的不同,为原始链接拼接: 朋友圈   from=timeline&isappins ...

  6. JQGrid之文件上传

    文件/图片上传功能,简单总结如下 1.引入ajaxfileupload.js 注意:该文件需要在引入Jquery之后引入 下载链接:https://i.cnblogs.com/Files.aspx 2 ...

  7. 调用链系列(3):如何从零开始捕获body和header

    拓展阅读:调用链系列(1):解读UAVStack中的贪吃蛇 调用链系列(2):轻调用链实现 在Java中,HTTP协议的请求/响应模型是由Servlet规范+Servlet容器(如Tomcat)实现的 ...

  8. 常用maven 命令

    重新依赖:mvn package -U -DskipTest=true; 在本地安装jar包:mvn install 清除产生的项目:mvn clean 运行测试:mvn test 上传到私服:mvn ...

  9. Mysql的B+ Tree索引

    为什么要使用索引? 最简单的方式实现数据查询:全表扫描,即将整张表的数据全部或者分批次加载进内存,由于存储的最小单位是块或者页,它们是由多行数据组成,然后逐块逐块或者逐页逐页地查找,这样查找的速度非常 ...

  10. windows如何访问wsl系统下的文件

    windows如何访问wsl系统下的文件 可以在wsl终端输入以下命令 explorer.exe . 会出现如下界面 这样就可以很方便的查看wsl的文件了