http://cogs.pro:8080/cogs/problem/problem.php?pid=vNQJJVUVj

再写个数学水题,其实lucas适用于m,n比较大而p比较小的情况。

题意:给出两个数n,m,求出C(n,m) mod 1000000007的值 (n <= 2 *1e5)

思路:先预处理出组合数,其中逆元用快速幂求,因为如果p是质数,a^p = a (mod p),a的逆元就是a^(p-2)。然后直接lucas就完了。

 #include<bits/stdc++.h>
#define fo(x) freopen(x".in","r",stdin); freopen(x".out","w",stdout);
using namespace std;
typedef long long ll; ll pow_mod(ll a,ll x,ll p){
ll ret = ;
while(x){
if(x&) ret = ret*a%p;
a = a*a%p;
x >>= ;
}
return ret;
} ll C(ll n,ll m, ll p){
if(m==) return ;
if(m>n-m) m = n-m;
ll up = ,down = ;
for(int i=;i<=m;i++){
up = (up*(n-i+))%p;
down = down*i%p;
}
return up*pow_mod(down,p-,p)%p;
} ll lucas(ll a,ll b,ll p){
if(b==) return ;
return C(a%p,b%p,p)*lucas(a/p,b/p,p);
} int main(){
fo("combination");
ll n,m,p=;
cin>>n>>m;
cout<<lucas(n,m,p)<<endl;
return ;
}

cogs2823求组合数(lucas定理的更多相关文章

  1. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  2. lucas求组合数C(n,k)%p

    Saving Beans http://acm.hdu.edu.cn/showproblem.php?pid=3037 #include<cstdio> typedef __int64 L ...

  3. 51nod1119(除法取模/费马小定理求组合数)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不 ...

  4. HDU 5852 Intersection is not allowed!(LGV定理行列式求组合数)题解

    题意:有K个棋子在一个大小为N×N的棋盘.一开始,它们都在棋盘的顶端,它们起始的位置是 (1,a1),(1,a2),...,(1,ak) ,它们的目的地是 (n,b1),(n,b2),...,(n,b ...

  5. lucas 定理学习

    大致意思就是求组合数C(n , m) % p的值, p为一个偶数 可以将组合数的n 和 m都理解为 p 进制的表示 n  = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p ...

  6. [Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)

    题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Descriptio ...

  7. [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理

    方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll< ...

  8. hdu 5446(2015长春网络赛J题 Lucas定理+中国剩余定理)

    题意:M=p1*p2*...pk:求C(n,m)%M,pi小于10^5,n,m,M都是小于10^18. pi为质数 M不一定是质数 所以只能用Lucas定理求k次 C(n,m)%Pi最后会得到一个同余 ...

  9. [CodeVs1515]跳(lucas定理+费马小定理)

    嘿嘿嘿好久没写数学题了,偶尔看到一道写一写... 题目大意:一个(n+1)*(m+1)[0<=n, m<=10^12,n*m<=10^12]的矩阵,C(0,0)=1,C(x,y)=C ...

随机推荐

  1. 【MySQL】

    org.springframework.dao.CannotAcquireLockException: PreparedStatementCallback; Lock wait timeout exc ...

  2. 【转载】【VSCode】Windows下VSCode编译调试c/c++

    转载自:http://blog.csdn.net/c_duoduo/article/details/51615381 懒得自己配置或自己配置出现不明问题的朋友可以点这里: [VSCode]Window ...

  3. java并发之ConcurrentLinkedQueue

    在并发编程中,我们可能经常需要用到线程安全的队列,JDK提供了两种模式的队列:阻塞队列和非阻塞队列.阻塞队列使用锁实现,非阻塞队列使用CAS实现.ConcurrentLinkedQueue是一个基于链 ...

  4. QRCode生成二维码,jq QRCode生成二维码,QRCode生成电子名片

    [QRCode官网]http://phpqrcode.sourceforge.net/ PHP QRCode生成二维码 官网下载QRCode源码包,引入源码包中的 qrlib.php . <?p ...

  5. C#实现Hash应用全解

    1.引言 HASH是根据文件内容的数据通过逻辑运算得到的数值, 不同的文件(即使是相同的文件名)得到的HASH值是不同的. 通过一定的哈希算法(典型的有MD5,SHA-1等),将一段较长的数据映射为较 ...

  6. 【0802 | Day 7】Python进阶(一)

    目 录  数字类型的内置方法 一.整型内置方法(int) 二.浮点型内置方法(float) 字符串类型内置方法 一.字符串类型内置方法(str) 二.常用操作和内置方法 优先掌握: 1.索引取值 2. ...

  7. Spring入门(六):条件化的bean

    1. 概念 默认情况下,Spring中定义的bean在应用程序启动时会全部装配,不管当前运行的是哪个环境(Dev,QA或者Prod),也不管当前运行的是什么系统(Windows或者Linux),但有些 ...

  8. 洛谷 P4401 [IOI2007]Miners 矿工配餐

    题意简述 有两个矿洞,已知食物的种类(≤3)和顺序,将他们送往任一矿洞, 若一个矿洞3次食物相同,贡献1:若有2种不同食物,贡献2:若有3种不同食物,贡献3 求最大贡献 题解思路 food[i] 为当 ...

  9. R-package XML 安装失败及解决方式

    安装R-package XML遇到的问题和解决方式 这个问题已经困扰了我很久很久一直找不到解决之法,后来终于找到了! Fedora 27, R 3.5.0, libxml和libxml2以及开发包均已 ...

  10. @WebInitParam注解

    Servlet注解——@WebInitParam多个InitParam的写法 使用@WebInitParam配置多个InitParam,使某些页面不被拦截.在过滤器Filter.java下添加注解:@ ...