Description

机房断网了!xj轻而易举地撬开了中心机房的锁,拉着zwl走了进去。他们发现中心主机爆炸了。

中心主机爆炸后分裂成了 n 块碎片,但碎片仍然互相连接,形成一个树的结构。每个碎片有一个状态值0或1 。zwl找了一下规律,发现只有所有碎片的状态值相同的时候,主机才能够修复。

xj碰了碰其中一个碎片 x ,发现对于满足 x 到 v 的路径上所有碎片的状态值与 x 的状态值相同 的那些碎片 v 状态值都取反(0变1,1变0)了!

现在他们要尝试修复这个网络,最少需要多少次触碰呢?

Input

碎片从 1 到 n 编号。

第一行一个整数 n ,第二行 n 个数 0 或 1, 第 i 个数表示 i 号碎片的状态值。

接下来 n−1 行,每行两个数 x,y 表示 x 与 y 碎片中有连接。

Output

一行一个数,表示最少需要的碰撞次数。

Sample Input

11

0 0 0 1 1 0 1 0 0 1 1

1 2

1 3

2 4

2 5

5 6

5 7

3 8

3 9

3 10

9 11

Sample Output

2

HINT

样例解释:首先触碰三号碎片,再触碰六号碎片,这样所有碎片的状态值都会变为1 ,共触碰两次。

首先,他触碰的作用就是把一个以颜色相同为标准的连通块的颜色集体反转(下面的联通块的定义也是颜色相同)。

那我们可以将一个联通块缩成一个点。

正确答案就是缩点后的树的直径的一半(向上取整),\(d\)=树的直径,\(ans=[\frac{d+1}{2}]\)。

为什么是这一个数?

一棵黑白相间的树,想要把整棵树变成相同的颜色,最少也要\([\frac{d+1}{2}]\)次。

接下来,为什么这\([\frac{d+1}{2}]\)次一定可以被取到呢?

在这棵树的直径上,必然有一个点是满足距离其他所有点的距离不超过\([\frac{d+1}{2}]\),否则与树的直径为\(d\)矛盾,\([\frac{d+1}{2}]+[\frac{d+1}{2}]+1>d\)。

#include<bits/stdc++.h>
#define N 1000010
using namespace std;
struct data
{
int s,n;
}bian[N];
int to[N],nxt[N],head[N],col[N],w[N],n,x,y,cnt,tot,nct,deep[N],maxn,nt,ntt;
void adde(int x,int y)
{
to[++cnt]=y;
nxt[cnt]=head[x];
head[x]=cnt;
}
void dfs(int u,int fa)//缩点
{
if(w[u]==w[fa]&&fa!=-1)
{
col[u]=col[fa];
}else{
col[u]=++tot;
bian[++nct].s=col[fa];
bian[nct].n=col[u];
}
for(int i=head[u];i;i=nxt[i])
{
int v=to[i];
if(v!=fa)
{
dfs(v,u);
}
}
}
void slove(int u,int fa)//求直径
{
for(int i=head[u];i;i=nxt[i])
{
int v=to[i];
if(v==fa)
{
continue;
}
deep[v]=deep[u]+1;
slove(v,u);
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&w[i]);
}
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
adde(x,y);
adde(y,x);
}
dfs(1,-1);
memset(head,0,sizeof(head));
cnt=0;
for(int i=1;i<=nct;i++)
{
adde(bian[i].s,bian[i].n);
adde(bian[i].n,bian[i].s);
}
slove(1,-1);//开始求树的直径
maxn=-0x7f7f7f;
for(int i=1;i<=tot;i++)
{
if(deep[i]>maxn)
{
nt=i;
maxn=deep[i];
}
}
memset(deep,0,sizeof(deep));
slove(nt,-1);
maxn=-0x7f7f7f;
for(int i=1;i<=tot;i++)
{
if(deep[i]>maxn)
{
ntt=i;
maxn=deep[i];
}
}
printf("%d\n",(deep[ntt]+1)/2);
return 0;
}

【XSY2505】tree的更多相关文章

  1. 【POJ3237】Tree 树链剖分+线段树

    [POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...

  2. 【BZOJ】【2631】Tree

    LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...

  3. 【Luogu1501】Tree(Link-Cut Tree)

    [Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...

  4. 【BZOJ3282】Tree (Link-Cut Tree)

    [BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...

  5. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

  6. 【HDU5909】Tree Cutting(FWT)

    [HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...

  7. 【BZOJ2654】Tree(凸优化,最小生成树)

    [BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...

  8. 【POJ1741】Tree(点分治)

    [POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...

  9. 点分治【bzoj1468】 Tree

    点分治[bzoj1468] Tree Description 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K Input N(n<=40000) 接下来n-1行边 ...

随机推荐

  1. python 对excel进行截图

    工作中需要对excel的单元格区域进行截图,以前是调用vba进行(走了很多弯路,虽然能实现,但比较low),后来逐步发现python的win32com与vba师出同门,很多方法操作都是类似的. 可以对 ...

  2. MongoDB 学习笔记之 Aggregation Pipeline实战实现inner join

     Aggregation Pipeline实战实现inner join: leftT集合: comments集合: 现在我们要用aggregation实现inner join db.comments. ...

  3. 跑的比谁都快 51Nod - 1789

    香港记者跑的比谁都快是众所周知的常识.   现在,香港记者站在一颗有  nn 个点的树的根结点上(即1号点),编号为  ii 的点拥有权值  a[i]a[i] ,数据保证每个点的编号都小于它任意孩子结 ...

  4. 利用 turtle库绘制简单图形

    turtle库是python的基础绘图库,这个库被介绍为一个最常用的用来介绍编程知识的方法库,其主要是用于程序设计入门,是标准库之一,利用turtle可以制作很多复杂的绘图. turtle名称含义为“ ...

  5. Validator 常用注解

    说明 Validator主要是校验用户提交的数据的合理性的,比如是否为空了,密码长度是否大于6位,是否是纯数字的,等等.那么在spring boot怎么使用这么强大的校验框架呢. 常用 @null 验 ...

  6. 微信小程序前端页面书写

    微信小程序前端页面书写 WXML(WeiXin Markup Language)是框架设计的一套标签语言,结合基础组件.事件系统,可以构建出页面的结构. 一.数据绑定 1. 普通写法 <view ...

  7. python selenium句柄操作

    一.获取当前窗口句柄 1.元素有属性,浏览器的窗口其实也有属性的,只是你看不到,浏览器窗口的属性用句柄(handle)来识别. 2.人为操作的话,可以通过眼睛看,识别不同的窗口点击切换.但是脚本没长眼 ...

  8. XGBoost: 你不能不知的机器学习算法

    XGBoost作为一个非常常用的算法,我觉得很有必要了解一下它的来龙去脉,于是抽空找了一些资料,主要包括陈天奇大佬的论文以及演讲PPT,以及网络上的一些博客文章,今天在这里对这些知识点进行整理归纳,论 ...

  9. Redis 3.0中文版学习(二)

    网址:http://wiki.jikexueyuan.com/project/redis-guide/entry-to-master-middle.html 1.Redis的列表: 采用链表的实现方法 ...

  10. HDU 6112 今夕何夕 (预处理 枚举)

    中文题意都看的懂啦~ 思路很简单,就是通过前一天推出当天是星期几,直接枚举所有2017-9999年的每一天就好了.ㄟ( ▔, ▔ )ㄏ 代码: #include <cstdio> #def ...