AtCoder Grand Contest 038E - Gachapon
\(\bf Description\)
一个 \(0\) 到 \(n-1\) 的随机数生成器,生成 \(i\) 的概率是 \(A_i/S\) ,其中 \(S=\sum_{i=0}^{n-1} A_i\) ,请你求出每个数出现次数 \(\geq B_i\) 的期望次数。
\(\bf Solution\)
什么生成函数爆推的做法一点不会啊……
min-max容斥,考虑每个集合最早出现出现次数 \(\geq B_i\) 的数的期望时间,由期望可加性,就是所有数 \(<B_i\) 的局面的期望出现次数之和。
对于一个集合,下一步跳出它的概率 \(P=\frac{s}{S}\) ,\(s\) 是集合中的 \(A_i\) 之和。如果我们知道它出现的概率是 \(p\) ,那么它存在的期望次数就是 \(\frac{p}{P}\) 。
然后考虑一下 \(p\) 这个东西怎么算,假如现在已经生成的数的概率为 \(t_1\) 到 \(t_m\) ,个数是 \(x_1\) 到 \(x_m\) ,且设 \(X\) 为总和,那么可得(对这个柿子还是有点困惑啊……懂,但是自己推就是错的,很自闭)
=\frac{X!}{s^X} \prod_{i=1}^m \frac{t_i^{x_i}}{x_i!}
\]
\(f_{i,j,k}\) 表示前 \(i\) 个数,\(X=j\) ,\(s=k\) 的贡献(所谓的贡献,是容斥之后的贡献,并且dp的时候只算 \(\prod\) 后面那一部分),然后背包一下就好了。
然后我开始写,然后我又算不清复杂度了……为什么最近老这样……
有个坑是当前这个数就算是0个,那也和不在集合是不一样的……然后我还把 \(\frac{1}{P}\) 弄成 \(P\) 了……
由于太懒了,所以就很不优雅地for到400了……
#include<bits/stdc++.h>
#define ll long long
#define fr(i,x,y) for(int i=(x);i<=(y);i++)
#define rf(i,x,y) for(int i=(x);i>=(y);i--)
#define frl(i,x,y) for(int i=(x);i<(y);i++)
using namespace std;
const int N=404;
const int p=998244353;
int n,a[N],b[N];
ll f[N][N];
void read(int &x){ scanf("%d",&x); }
ll qpow(ll sum,ll n){
ll ans=1;
for(;n;n>>=1,sum=sum*sum%p) if (n&1) ans=ans*sum%p;
return ans;
}
ll mul[N],inv[N];
void init(){
mul[0]=1;
frl(i,1,N) mul[i]=mul[i-1]*i%p;
inv[N-1]=qpow(mul[N-1],p-2);
rf(i,N-2,0) inv[i]=inv[i+1]*(i+1)%p;
}
void Add(ll &x,ll y){
x+=y;//x%=p;
if (x<0) x+=p;
if (x>=p) x-=p;
}
int main(){
init();
read(n);
fr(i,1,n) read(a[i]),read(b[i]);
int S=0;
fr(i,1,n) S+=a[i];
//S=qpow(S,p-2);
f[0][0]=p-1;
fr(i,1,n)
rf(k,400,0)
fr(j,0,400)
frl(x,0,b[i])
if (f[j][k]) Add(f[j+x][k+a[i]],p-f[j][k]*qpow(a[i],x)%p*inv[x]%p);
ll ans=0;
fr(j,0,400)
fr(k,1,400)
Add(ans,mul[j]*f[j][k]%p*qpow(k,p-1-j)%p*qpow(k,p-2)%p*S%p);
cout<<ans<<endl;
return 0;
}
AtCoder Grand Contest 038E - Gachapon的更多相关文章
- AtCoder Grand Contest 012
AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...
- AtCoder Grand Contest 011
AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...
- AtCoder Grand Contest 031 简要题解
AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...
- AtCoder Grand Contest 010
AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...
- AtCoder Grand Contest 009
AtCoder Grand Contest 009 A - Multiple Array 翻译 见洛谷 题解 从后往前考虑. #include<iostream> #include< ...
- AtCoder Grand Contest 008
AtCoder Grand Contest 008 A - Simple Calculator 翻译 有一个计算器,上面有一个显示按钮和两个其他的按钮.初始时,计算器上显示的数字是\(x\),现在想把 ...
- AtCoder Grand Contest 007
AtCoder Grand Contest 007 A - Shik and Stone 翻译 见洛谷 题解 傻逼玩意 #include<cstdio> int n,m,tot;char ...
- AtCoder Grand Contest 006
AtCoder Grand Contest 006 吐槽 这套题要改个名字,叫神仙结论题大赛 A - Prefix and Suffix 翻译 给定两个串,求满足前缀是\(S\),后缀是\(T\),并 ...
- AtCoder Grand Contest 005
AtCoder Grand Contest 005 A - STring 翻译 给定一个只包含\(ST\)的字符串,如果出现了连续的\(ST\),就把他删去,然后所有位置前移.问最后剩下的串长. 题解 ...
随机推荐
- Spark 学习笔记之 map/flatMap/filter/mapPartitions/mapPartitionsWithIndex/sample
map/flatMap/filter/mapPartitions/mapPartitionsWithIndex/sample:
- 报错fatal: refusing to merge unrelated histories
提交到远程仓库的时候报错如下 是因为远程仓库有东西更新,但本地仓库没有更新造成提交失败 需要先把远程仓库给拉取下来,执行命令git pull origin master,又报错了如下 是因为两个仓库提 ...
- 项目二:企业级java电商网站开发(服务端)
声明:项目源于网络,支持正版教程,学习使用,仅记录在此 项目介绍 企业级java电商网站开发(服务端),模块划分:用户管理,商品管理,商品品类管理,订单管理,订单详情管理,购物车管理,收货地址管理,支 ...
- 旧瓶新酒-获取网络资源即爬取下载页面内容(图片、html、css、js等)
这个java获取网络资源以前也写过不少 最近用到又重新写了一个,apache.commons.io中的例子就非常好,但是无法对请求进行详细设置 于是大部分照搬,局部替换以设置请求头 如需更加复杂的设置 ...
- 【TencentOS tiny】深度源码分析(4)——消息队列
消息队列 在前一篇文章中[TencentOS tiny学习]源码分析(3)--队列 我们描述了TencentOS tiny的队列实现,同时也点出了TencentOS tiny的队列是依赖于消息队列的, ...
- [JLOI2014]天天酷跑
请允许我对记忆化搜索进行一个总结,我认为所有的搜索只要数据范围允许,都可以转化为记忆化搜索, 只是,用处的多与少的关系,其本身是求出设出状态之后,为求出当前状态进行递推(搜索),推到 已知状态,之后再 ...
- Spring Security 动态url权限控制(三)
一.前言 本篇文章将讲述Spring Security 动态分配url权限,未登录权限控制,登录过后根据登录用户角色授予访问url权限 基本环境 spring-boot 2.1.8 mybatis-p ...
- Tomcat基本知识(一)
顶层架构先上一张Tomcat的顶层结构图(图A),如下: Tomcat中最顶层的容器是Server,代表着整个服务器,从上图中可以看出,一个Server可以包含至少一个Service,用于具体提供服务 ...
- apply、bind、call方法的作用与区别
js中call.apply.bind方法的作用和区别 1. call方法 作用:专门用于修改方法内部的 this 指向 格式:xxx.call( 对象名, 参数1, 参数2 , ...);.即:将 x ...
- python中如何通过报错信息定位问题(异常传播轨迹)
class SelfException(Exception): pass def main(): firstMethod() def firstMethod(): secondMethod() def ...