poj-3682 King Arthur's Birthday Celebration
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. The luxurious celebration will start on his birthday and King Arthur decides to let fate tell when to stop it. Every day he will toss a coin which has probability p that it comes up heads and 1-p up tails. The celebration will be on going until the coin has come up heads for K times. Moreover, the king also decides to spend 1 thousand coins on the first day's celebration, 3 thousand coins on the second day's, 5 thousand coins on the third day's ... The cost of next day will always be 2 thousand coins more than the previous one's. Can you tell the minister how many days the celebration is expected to last and how many coins the celebration is expected to cost?
Input
The input consists of several test cases.
For every case, there is a line with an integer K ( 0 < K ≤ 1000 ) and a real number p (0.1 ≤ p ≤ 1).
Input ends with a single zero.
Output
For each case, print two number -- the expected number of days
and the expected number of coins (in thousand), with the fraction
rounded to 3 decimal places.
Sample Input
1 1
1 0.5
0
Sample Output
1.000 1.000
2.000 6.000
OJ-ID:
poj-3682
author:
Caution_X
date of submission:
20191031
tags:
math
description modelling:
有一个人每天抛一次硬币,直到抛出了K次正面向上才会停止,第i天的金钱花费是2*i-1,现在输入
K,问花费金钱的数学期望
major steps to solve it:
设E[i],F[i],E[i]表示抛出i次正面向上时的期望天数,F[i]表示第i天的花费金钱数学期望
(1)E[i]=1/p+W[i-1]
(2)F[i] = p*(F[i]-1 + 2 * E[i] -1)/*第i天正好得到正面向上*/ + (1-p)*(F[i] + 2 * (E[i]+1) -1) /*第i天没有得到正面向上*/
AC code:
#include <stdio.h> double E[];
double F[]; int main()
{
int i,j,n;
double q,p;
while()
{
scanf("%d",&n);
if (n==) break;
scanf("%lf",&p);
E[]=;
F[]=;
for (i=;i<=n;i++)
{
E[i]=/p+E[i-];
F[i]=F[i-]+*E[i-]-*E[i]+(+*E[i])/p;
}
printf("%.3f %.3f\n",E[n],F[n]);
}
return ;
}
poj-3682 King Arthur's Birthday Celebration的更多相关文章
- poj 3682 King Arthur's Birthday Celebration (期望dp)
传送门 解题思路 第一问比较简单,设$f[i]$表示扔了$i$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1$,意思就是$i$次正面向上可以 ...
- POJ3682 King Arthur's Birthday Celebration
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...
- 【概率论】【POJ 3682】【King Arthur's Birthday Celebration】
题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 设F[i]为第i次结束时的概率 F[i]= c(i-1,k-1)*p^k*(1-p)^( ...
- King Arthur's Birthday Celebration
每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望. 天数期望: A.投出了k ...
- POJ3682;King Arthur's Birthday Celebration(期望)
传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...
- [POJ3682]King Arthur's Birthday Celebration[期望DP]
也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...
- POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...
- hdu4337 King Arthur's Knights
King Arthur's Knights Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 4337 King Arthur's Knights (Hamilton)
King Arthur's KnightsTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- [考试反思]1113csp-s模拟测试114:一梦
自闭.不废话.写一下低错. T1:觉得信心赛T1不会很恶心一遍过样例直接没对拍(其实是想写完T2之后回来对拍的) 状态也不好,基本全机房都开始码了我还没想出来(skyh已经开T2了).想了40多分钟. ...
- java之可变个数的形参
//采用数组形参来定义方法 public static void test (int a, String[] books); //采用可变个数形参来定义方法 public static void te ...
- leetcode-字符串篇
Implement strStr() /** * Implement strStr(). * * Return the index of the first occurrence of needle ...
- Linux 指令学习
查询java安装地址 which java ls -lrt /bin/java ls -lrt /etc/alternatives/java # 如果已经配好,则echo $JAVA_HOME 更改环 ...
- SpringCloud微服务(04):Turbine组件,实现微服务集群监控
本文源码:GitHub·点这里 || GitEE·点这里 写在前面,阅读本文前,你需要了解熔断器相关内容 SpringCloud微服务:Hystrix组件,实现服务熔断 一.聚合监控简介 1.Dash ...
- InfluxDB从原理到实战 - 一篇文章搞懂InfluxDB时区
0x00 简介 InfluxDB默认以UTC时间存储并返回时间戳,当接收到一个时序数据记录时,InfluxDB将时间戳从本地时区时间转换为UTC时间并存储,查询时,InfluxDB返回的时间戳对 ...
- (转)简单移动平均线(Simple Moving Average,SMA) 定义及使用
原文链接:https://blog.csdn.net/Enjolras_fuu/article/details/88602309 扩展:https://www.investopedia.com/t ...
- Emoji 映射编码
Emoji官网:https://emojipedia.org/ Name Unified DoCoMo KDDI Softbank Google Wechat black sun with r ...
- windows 下安装beego
好久没写博客了,最近忙于一些杂事,看见有几个博友留言了,未能及时回复,稍后晚点回复诸位博友.不多说了,windows安装beego(请先确保git环境已安装并设置了git环境变量.这个简单网上很多教程 ...
- Vue Cli3 中别名的配置问题
Vue Cli3 中别名的配置问题 vue-cli3中是没有config.build等目录的,这是因为vue-cli3中将这些配置隐藏起来了,如果想要修改,可以在vue.config.js文件中进行修 ...