poj-3682 King Arthur's Birthday Celebration
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. The luxurious celebration will start on his birthday and King Arthur decides to let fate tell when to stop it. Every day he will toss a coin which has probability p that it comes up heads and 1-p up tails. The celebration will be on going until the coin has come up heads for K times. Moreover, the king also decides to spend 1 thousand coins on the first day's celebration, 3 thousand coins on the second day's, 5 thousand coins on the third day's ... The cost of next day will always be 2 thousand coins more than the previous one's. Can you tell the minister how many days the celebration is expected to last and how many coins the celebration is expected to cost?
Input
The input consists of several test cases.
For every case, there is a line with an integer K ( 0 < K ≤ 1000 ) and a real number p (0.1 ≤ p ≤ 1).
Input ends with a single zero.
Output
For each case, print two number -- the expected number of days
and the expected number of coins (in thousand), with the fraction
rounded to 3 decimal places.
Sample Input
1 1
1 0.5
0
Sample Output
1.000 1.000
2.000 6.000
OJ-ID:
poj-3682
author:
Caution_X
date of submission:
20191031
tags:
math
description modelling:
有一个人每天抛一次硬币,直到抛出了K次正面向上才会停止,第i天的金钱花费是2*i-1,现在输入
K,问花费金钱的数学期望
major steps to solve it:
设E[i],F[i],E[i]表示抛出i次正面向上时的期望天数,F[i]表示第i天的花费金钱数学期望
(1)E[i]=1/p+W[i-1]
(2)F[i] = p*(F[i]-1 + 2 * E[i] -1)/*第i天正好得到正面向上*/ + (1-p)*(F[i] + 2 * (E[i]+1) -1) /*第i天没有得到正面向上*/
AC code:
#include <stdio.h> double E[];
double F[]; int main()
{
int i,j,n;
double q,p;
while()
{
scanf("%d",&n);
if (n==) break;
scanf("%lf",&p);
E[]=;
F[]=;
for (i=;i<=n;i++)
{
E[i]=/p+E[i-];
F[i]=F[i-]+*E[i-]-*E[i]+(+*E[i])/p;
}
printf("%.3f %.3f\n",E[n],F[n]);
}
return ;
}
poj-3682 King Arthur's Birthday Celebration的更多相关文章
- poj 3682 King Arthur's Birthday Celebration (期望dp)
传送门 解题思路 第一问比较简单,设$f[i]$表示扔了$i$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1$,意思就是$i$次正面向上可以 ...
- POJ3682 King Arthur's Birthday Celebration
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...
- 【概率论】【POJ 3682】【King Arthur's Birthday Celebration】
题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 设F[i]为第i次结束时的概率 F[i]= c(i-1,k-1)*p^k*(1-p)^( ...
- King Arthur's Birthday Celebration
每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望. 天数期望: A.投出了k ...
- POJ3682;King Arthur's Birthday Celebration(期望)
传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...
- [POJ3682]King Arthur's Birthday Celebration[期望DP]
也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...
- POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...
- hdu4337 King Arthur's Knights
King Arthur's Knights Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 4337 King Arthur's Knights (Hamilton)
King Arthur's KnightsTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- Vue项目中使用jquery插件
1.引入jquery,并且在vue.config.js里配置 config.plugin('provide') .use(webpack.ProvidePlugin, [{ $: 'jquery', ...
- python-基础-def(*agrs,**kwagrs)
1.*args,返回的数据类型为 tuple,使用方法如下图代码:**kwargs 返回的数据类型为 dict 使用方法如下图代码. def KeyWord_s(arg): print(arg,typ ...
- [译]Vulkan教程(17)帧缓存
[译]Vulkan教程(17)帧缓存 Framebuffers 帧缓存 We've talked a lot about framebuffers in the past few chapters a ...
- vuetify,vux,Mint UI 等框架的选择
vuetify: https://vuetifyjs.com/zh-Hans/getting-started/quick-start NutUI:https://github.com/jdf2e/nu ...
- Java方法之参数传递机制
目录 Java方法之参数传递机制 基本数据类型 引用数据类型 综合练习 总结 Java方法之参数传递机制 Java方法中如果声明了形参,在调用方法时就必须给这些形参指定参数值,实际传进去的这个值就叫做 ...
- windows下cocos2d-x环境搭建
该教程使用的cocos2dx的版本为3.14,3之后的大概都差不多 Python环境搭建: cocos2dx在windows上新建工程需要用到python脚本,安装python-2.7.x,可以上py ...
- 文件批量生成IO流读写
/// <summary> /// 生成文件的 /// </summary> /// <param name="calssName"></ ...
- (转)理解滑动平均(exponential moving average)
转自:理解滑动平均(exponential moving average) 1. 用滑动平均估计局部均值 滑动平均(exponential moving average),或者叫做指数加权平均(exp ...
- vscode解决nuget插件不能使用的问题
错误提示 使用vscode安装nuget插件之后出现错误: "Versioning information could not be retrieved from the NuGet pac ...
- [转]VBA Check if an outlook folder exists; if not create it
本文转自:http://www.outlookcode.com/d/code/quarexe.htm To quarantine application file attachments This O ...