Linux-3.14.12内存管理笔记【构建内存管理框架(5)】
前面已经分析了内存管理框架的构建实现过程,有部分内容未完全呈现出来,这里主要做个补充。
如下图,这是前面已经看到过的linux物理内存管理框架的层次关系。
现着重分析一下各个管理结构体的成员功能作用。
【file:/include/linux/mmzone.h】
typedef struct pglist_data {
struct zone node_zones[MAX_NR_ZONES];
struct zonelist node_zonelists[MAX_ZONELISTS];
int nr_zones;
#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
struct page *node_mem_map;
#ifdef CONFIG_MEMCG
struct page_cgroup *node_page_cgroup;
#endif
#endif
#ifndef CONFIG_NO_BOOTMEM
struct bootmem_data *bdata;
#endif
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Must be held any time you expect node_start_pfn, node_present_pages
* or node_spanned_pages stay constant. Holding this will also
* guarantee that any pfn_valid() stays that way.
*
* pgdat_resize_lock() and pgdat_resize_unlock() are provided to
* manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
*
* Nests above zone->lock and zone->span_seqlock
*/
spinlock_t node_size_lock;
#endif
unsigned long node_start_pfn;
unsigned long node_present_pages; /* total number of physical pages */
unsigned long node_spanned_pages; /* total size of physical page
range, including holes */
int node_id;
nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
wait_queue_head_t kswapd_wait;
wait_queue_head_t pfmemalloc_wait;
struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
int kswapd_max_order;
enum zone_type classzone_idx;
#ifdef CONFIG_NUMA_BALANCING
/* Lock serializing the migrate rate limiting window */
spinlock_t numabalancing_migrate_lock;
/* Rate limiting time interval */
unsigned long numabalancing_migrate_next_window;
/* Number of pages migrated during the rate limiting time interval */
unsigned long numabalancing_migrate_nr_pages;
#endif
} pg_data_t;
- struct zone node_zones[MAX_NR_ZONES];
——存放该pg_data_t里面的zone;
- struct zonelist node_zonelists[MAX_ZONELISTS];
——其指向一个page结构的数组,数组中的每个成员为该节点中的一个物理页面,于是整个数组就对应了该节点中所有的物理页面;
- struct page_cgroup *node_page_cgroup;
——用于管理page_cgroup,原来的page_cgroup是page页面管理结构的一个成员,现在移到这里了,它将会在初始化时所有的page_cgroup都将申请下来;
- struct bootmem_data *bdata;
——该数据指向bootmem_node_data,可以通过system.map查到。原是用于bootmem内存分配器的信息存储,当前改用memblock算法,则不存在该成员;
- unsigned long node_start_pfn;
——指向当前pg_data_t结构管理的物理起始页面;
- unsigned long node_present_pages;
——记录物理页面数总量,除开内存空洞的物理页面数;
- unsigned long node_spanned_pages;
——最大和最小页面号的差值,包括内存空洞的总的物理页面大小;
- int node_id;
——pg_data_t对应的索引号,非NUMA架构下该值为0;
- nodemask_t reclaim_nodes;
——用于记录可回收的内存管理节点node信息;
- wait_queue_head_t kswapd_wait;
——kswapd是页面交换守护线程,该线程会阻塞在这个等待队列,当满足条件后,调用wake_up_interruptible()唤醒该队列进行相关操作;
- wait_queue_head_t pfmemalloc_wait;
——用于减缓内存直接回收;
- struct task_struct *kswapd;
——指向kswapd守护线程的任务指针;
- int kswapd_max_order;
——用于表示kswapd守护线程每次回收的页面个数;
- enum zone_type classzone_idx;
——该成员与kswapd有关;
【file:/include/linux/mmzone.h】
struct zone {
/* Fields commonly accessed by the page allocator */
/* zone watermarks, access with *_wmark_pages(zone) macros */
unsigned long watermark[NR_WMARK];
/*
* When free pages are below this point, additional steps are taken
* when reading the number of free pages to avoid per-cpu counter
* drift allowing watermarks to be breached
*/
unsigned long percpu_drift_mark;
/*
* We don't know if the memory that we're going to allocate will be freeable
* or/and it will be released eventually, so to avoid totally wasting several
* GB of ram we must reserve some of the lower zone memory (otherwise we risk
* to run OOM on the lower zones despite there's tons of freeable ram
* on the higher zones). This array is recalculated at runtime if the
* sysctl_lowmem_reserve_ratio sysctl changes.
*/
unsigned long lowmem_reserve[MAX_NR_ZONES];
/*
* This is a per-zone reserve of pages that should not be
* considered dirtyable memory.
*/
unsigned long dirty_balance_reserve;
#ifdef CONFIG_NUMA
int node;
/*
* zone reclaim becomes active if more unmapped pages exist.
*/
unsigned long min_unmapped_pages;
unsigned long min_slab_pages;
#endif
struct per_cpu_pageset __percpu *pageset;
/*
* free areas of different sizes
*/
spinlock_t lock;
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
/* Set to true when the PG_migrate_skip bits should be cleared */
bool compact_blockskip_flush;
/* pfns where compaction scanners should start */
unsigned long compact_cached_free_pfn;
unsigned long compact_cached_migrate_pfn;
#endif
#ifdef CONFIG_MEMORY_HOTPLUG
/* see spanned/present_pages for more description */
seqlock_t span_seqlock;
#endif
struct free_area free_area[MAX_ORDER];
#ifndef CONFIG_SPARSEMEM
/*
* Flags for a pageblock_nr_pages block. See pageblock-flags.h.
* In SPARSEMEM, this map is stored in struct mem_section
*/
unsigned long *pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
#ifdef CONFIG_COMPACTION
/*
* On compaction failure, 1<<compact_defer_shift compactions
* are skipped before trying again. The number attempted since
* last failure is tracked with compact_considered.
*/
unsigned int compact_considered;
unsigned int compact_defer_shift;
int compact_order_failed;
#endif
ZONE_PADDING(_pad1_)
/* Fields commonly accessed by the page reclaim scanner */
spinlock_t lru_lock;
struct lruvec lruvec;
unsigned long pages_scanned; /* since last reclaim */
unsigned long flags; /* zone flags, see below */
/* Zone statistics */
atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
/*
* The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
* this zone's LRU. Maintained by the pageout code.
*/
unsigned int inactive_ratio;
ZONE_PADDING(_pad2_)
/* Rarely used or read-mostly fields */
/*
* wait_table -- the array holding the hash table
* wait_table_hash_nr_entries -- the size of the hash table array
* wait_table_bits -- wait_table_size == (1 << wait_table_bits)
*
* The purpose of all these is to keep track of the people
* waiting for a page to become available and make them
* runnable again when possible. The trouble is that this
* consumes a lot of space, especially when so few things
* wait on pages at a given time. So instead of using
* per-page waitqueues, we use a waitqueue hash table.
*
* The bucket discipline is to sleep on the same queue when
* colliding and wake all in that wait queue when removing.
* When something wakes, it must check to be sure its page is
* truly available, a la thundering herd. The cost of a
* collision is great, but given the expected load of the
* table, they should be so rare as to be outweighed by the
* benefits from the saved space.
*
* __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
* primary users of these fields, and in mm/page_alloc.c
* free_area_init_core() performs the initialization of them.
*/
wait_queue_head_t * wait_table;
unsigned long wait_table_hash_nr_entries;
unsigned long wait_table_bits;
/*
* Discontig memory support fields.
*/
struct pglist_data *zone_pgdat;
/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
unsigned long zone_start_pfn;
/*
* spanned_pages is the total pages spanned by the zone, including
* holes, which is calculated as:
* spanned_pages = zone_end_pfn - zone_start_pfn;
*
* present_pages is physical pages existing within the zone, which
* is calculated as:
* present_pages = spanned_pages - absent_pages(pages in holes);
*
* managed_pages is present pages managed by the buddy system, which
* is calculated as (reserved_pages includes pages allocated by the
* bootmem allocator):
* managed_pages = present_pages - reserved_pages;
*
* So present_pages may be used by memory hotplug or memory power
* management logic to figure out unmanaged pages by checking
* (present_pages - managed_pages). And managed_pages should be used
* by page allocator and vm scanner to calculate all kinds of watermarks
* and thresholds.
*
* Locking rules:
*
* zone_start_pfn and spanned_pages are protected by span_seqlock.
* It is a seqlock because it has to be read outside of zone->lock,
* and it is done in the main allocator path. But, it is written
* quite infrequently.
*
* The span_seq lock is declared along with zone->lock because it is
* frequently read in proximity to zone->lock. It's good to
* give them a chance of being in the same cacheline.
*
* Write access to present_pages at runtime should be protected by
* lock_memory_hotplug()/unlock_memory_hotplug(). Any reader who can't
* tolerant drift of present_pages should hold memory hotplug lock to
* get a stable value.
*
* Read access to managed_pages should be safe because it's unsigned
* long. Write access to zone->managed_pages and totalram_pages are
* protected by managed_page_count_lock at runtime. Idealy only
* adjust_managed_page_count() should be used instead of directly
* touching zone->managed_pages and totalram_pages.
*/
unsigned long spanned_pages;
unsigned long present_pages;
unsigned long managed_pages;
/*
* Number of MIGRATE_RESEVE page block. To maintain for just
* optimization. Protected by zone->lock.
*/
int nr_migrate_reserve_block;
/*
* rarely used fields:
*/
const char *name;
} ____cacheline_internodealigned_in_smp;
- unsigned long watermark[NR_WMARK];
——该数组有三个值WMARK_MIN、WMARK_LOW、WMARK_HIGH,如命名所标识,min最小,low居中,high最大。内存分配过程中,当空闲页面达到low时,内存分配器会唤醒kswapd守护进程来回收物理页面;当空闲页面达到min时,内存分配器就会唤醒kswapd以同步方式回收;如果kswapd被唤醒后,空闲页面达到high时,则会使kswapd再次休眠;
- unsigned long percpu_drift_mark;
——当空闲页面低于该值,将会引发附加操作的执行,用于避免前面的watermark被冲破;
- unsigned long lowmem_reserve[MAX_NR_ZONES];
——记录每个管理区中必须保留的物理页面数,以用于紧急状况下的内存分配;
- unsigned long dirty_balance_reserve;
——用于表示不会被内存分配器分配出去的空闲页面部分的近似值;
- struct per_cpu_pageset __percpu *pageset;
——该数组里面的成员pcp用于实现冷热页面的管理;
- spinlock_t lock;
——spinlock锁,用于解决该管理区的并发问题;
- struct free_area free_area[MAX_ORDER];
——主要用于Buddy内存管理算法(伙伴算法);
- unsigned long *pageblock_flags;
——与伙伴算法的碎片迁移算法有关;
- spinlock_t lru_lock;
——用于保护lruvec结构数据;
- struct lruvec lruvec;
——lruvec该数组里面有一个lists是用于lru管理的链表,另外有一个reclaim_stat用于页面回收的状态标示;
- unsigned long pages_scanned;
——用于记录上次物理页面回收时,扫描过的页描述符总数;
- unsigned long flags;
——用于表示当前内存管理区的状态;
- atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
——用于统计该内存管理区中各项状态的数值;
- unsigned int inactive_ratio;
——不活跃的页面比例;
wait_queue_head_t *wait_table;
unsigned long wait_table_hash_nr_entries;
unsigned long wait_table_bits;
struct pglist_data *zone_pgdat;
——指向该内存管理区的pg_data_list;
- unsigned long zone_start_pfn;
——记录当前内存管理区中最小的物理页面号;
- unsigned long spanned_pages;
——记录内存管理区的总页面数,包括内存空洞的页面数,实则上是管理区末尾页面号和起始页面号的差值;
- unsigned long present_pages;
——除去内存空洞后的内存管理区实际有效的总页面数;
- unsigned long managed_pages;
——用于记录被内存管理算法管理的物理页面数,这是除去了在初始化阶段被申请的页面;
- int nr_migrate_reserve_block;
——用于优化的,记录内存迁移保留的页面数;
- const char *name;
——用于记录该管理区的名字;
【file:/include/linux/mmzone.h】
/*
* Each physical page in the system has a struct page associated with
* it to keep track of whatever it is we are using the page for at the
* moment. Note that we have no way to track which tasks are using
* a page, though if it is a pagecache page, rmap structures can tell us
* who is mapping it.
*
* The objects in struct page are organized in double word blocks in
* order to allows us to use atomic double word operations on portions
* of struct page. That is currently only used by slub but the arrangement
* allows the use of atomic double word operations on the flags/mapping
* and lru list pointers also.
*/
struct page {
/* First double word block */
unsigned long flags; /* Atomic flags, some possibly
* updated asynchronously */
union {
struct address_space *mapping; /* If low bit clear, points to
* inode address_space, or NULL.
* If page mapped as anonymous
* memory, low bit is set, and
* it points to anon_vma object:
* see PAGE_MAPPING_ANON below.
*/
void *s_mem; /* slab first object */
};
/* Second double word */
struct {
union {
pgoff_t index; /* Our offset within mapping. */
void *freelist; /* sl[aou]b first free object */
bool pfmemalloc; /* If set by the page allocator,
* ALLOC_NO_WATERMARKS was set
* and the low watermark was not
* met implying that the system
* is under some pressure. The
* caller should try ensure
* this page is only used to
* free other pages.
*/
};
union {
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
/* Used for cmpxchg_double in slub */
unsigned long counters;
#else
/*
* Keep _count separate from slub cmpxchg_double data.
* As the rest of the double word is protected by
* slab_lock but _count is not.
*/
unsigned counters;
#endif
struct {
union {
/*
* Count of ptes mapped in
* mms, to show when page is
* mapped & limit reverse map
* searches.
*
* Used also for tail pages
* refcounting instead of
* _count. Tail pages cannot
* be mapped and keeping the
* tail page _count zero at
* all times guarantees
* get_page_unless_zero() will
* never succeed on tail
* pages.
*/
atomic_t _mapcount;
struct { /* SLUB */
unsigned inuse:16;
unsigned objects:15;
unsigned frozen:1;
};
int units; /* SLOB */
};
atomic_t _count; /* Usage count, see below. */
};
unsigned int active; /* SLAB */
};
};
/* Third double word block */
union {
struct list_head lru; /* Pageout list, eg. active_list
* protected by zone->lru_lock !
*/
struct { /* slub per cpu partial pages */
struct page *next; /* Next partial slab */
#ifdef CONFIG_64BIT
int pages; /* Nr of partial slabs left */
int pobjects; /* Approximate # of objects */
#else
short int pages;
short int pobjects;
#endif
};
struct list_head list; /* slobs list of pages */
struct slab *slab_page; /* slab fields */
struct rcu_head rcu_head; /* Used by SLAB
* when destroying via RCU
*/
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
pgtable_t pmd_huge_pte; /* protected by page->ptl */
#endif
};
/* Remainder is not double word aligned */
union {
unsigned long private; /* Mapping-private opaque data:
* usually used for buffer_heads
* if PagePrivate set; used for
* swp_entry_t if PageSwapCache;
* indicates order in the buddy
* system if PG_buddy is set.
*/
#if USE_SPLIT_PTE_PTLOCKS
#if ALLOC_SPLIT_PTLOCKS
spinlock_t *ptl;
#else
spinlock_t ptl;
#endif
#endif
struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
struct page *first_page; /* Compound tail pages */
};
/*
* On machines where all RAM is mapped into kernel address space,
* we can simply calculate the virtual address. On machines with
* highmem some memory is mapped into kernel virtual memory
* dynamically, so we need a place to store that address.
* Note that this field could be 16 bits on x86 ... ;)
*
* Architectures with slow multiplication can define
* WANT_PAGE_VIRTUAL in asm/page.h
*/
#if defined(WANT_PAGE_VIRTUAL)
void *virtual; /* Kernel virtual address (NULL if
not kmapped, ie. highmem) */
#endif /* WANT_PAGE_VIRTUAL */
#ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
unsigned long debug_flags; /* Use atomic bitops on this */
#endif
#ifdef CONFIG_KMEMCHECK
/*
* kmemcheck wants to track the status of each byte in a page; this
* is a pointer to such a status block. NULL if not tracked.
*/
void *shadow;
#endif
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
int _last_cpupid;
#endif
}
(该结构很多union结构,主要是用于各种算法不同数据的空间复用,暂时记录部分常见的数据成员)
- unsigned long flags;
——用于记录页框的类型;
- struct address_space *mapping;
——用于区分该页是映射页框还是匿名页框;
- atomic_t _mapcount;
——记录了系统中页表有多少项指向该页;
- atomic_t _count;
——当前系统对该页面的引用次数;
- struct list_head lru;
——当页框处于分配状态时,该成员用于zone的lruvec里面的list,当页框未被分配时则用于伙伴算法;
- unsigned long private;
——指向“私有”数据的指针。根据页的用途,可以用不同的方式使用该指针,通常用于与数据缓冲区关联起来;
- void *virtual;
——用于高端内存区域的页,即用于无法直接映射的页,该成员用于存储该页的虚拟地址;
Linux-3.14.12内存管理笔记【构建内存管理框架(5)】的更多相关文章
- Linux-3.14.12内存管理笔记【内存泄漏检测kmemleak示例】【转】
本文转载自:http://blog.chinaunix.net/uid-26859697-id-5758037.html 分析完kmemleak实现后,照常实验一下,以确定功能正常. 如kmemche ...
- Linux中的Buffer Cache和Page Cache echo 3 > /proc/sys/vm/drop_caches Slab内存管理机制 SLUB内存管理机制
Linux中的Buffer Cache和Page Cache echo 3 > /proc/sys/vm/drop_caches Slab内存管理机制 SLUB内存管理机制 http://w ...
- 垃圾回收GC:.Net自己主动内存管理 上(一)内存分配
垃圾回收GC:.Net自己主动内存管理 上(一)内存分配 垃圾回收GC:.Net自己主动内存管理 上(一)内存分配 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己 ...
- Win3内存管理之私有内存跟共享内存的申请与释放
Win3内存管理之私有内存跟共享内存的申请与释放 一丶内存简介私有内存申请 通过上一篇文章.我们理解了虚拟内存与物理内存的区别. 那么我们有API事专门申请虚拟内存与物理内存的. 有私有内存跟共享内存 ...
- JVM自动内存管理机制——Java内存区域(下)
一.虚拟机参数配置 在上一篇<Java自动内存管理机制——Java内存区域(上)>中介绍了有关的基础知识,这一篇主要是通过一些示例来了解有关虚拟机参数的配置. 1.Java堆参数设置 a) ...
- 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法
垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己主动内存管理 上(一)内存分配 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己 ...
- Linux-3.14.12内存管理笔记【构建内存管理框架(1)】
传统的计算机结构中,整个物理内存都是一条线上的,CPU访问整个内存空间所需要的时间都是相同的.这种内存结构被称之为UMA(Uniform Memory Architecture,一致存储结构).但是随 ...
- Linux-3.14.12内存管理笔记【构建内存管理框架(2)】
前面构建内存管理框架,已经将内存管理node节点设置完毕,接下来将是管理区和页面管理的构建.此处代码实现主要在于setup_arch()下的一处钩子:x86_init.paging.pagetable ...
- Linux-3.14.12内存管理笔记【构建内存管理框架(3)】
此处接前文,分析free_area_init_nodes()函数最后部分,分析其末尾的循环: for_each_online_node(nid) { pg_data_t *pgdat = NODE_D ...
随机推荐
- 微软发布ML.NET 1.0
原文地址:https://devblogs.microsoft.com/dotnet/announcing-ml-net-1-0/ 我们很高兴地宣布今天发布ML.NET 1.0. ML.NET是一个 ...
- IM即时通信软件设计
参考资料: 架构篇:https://yq.aliyun.com/articles/698301 模型篇:https://yq.aliyun.com/articles/701593 实现篇:https: ...
- 搭建私人的云笔记_使用webdav服务
搭建私人的云笔记_使用webdav服务 转载注明来源: 本文链接 来自osnosn的博客,写于 2019-10-10. 手机上有很多云笔记app,大多支持云存储.可是把笔记放在别人的服务器上,总觉得不 ...
- jumpserver 资产管理及授权
1.用户管理-添加[用户列表] 1.1点击创建用户 1.2创建用户 2.用户管理-添加[用户组] 2.1点击创建用户组 2.2创建用户组 3.资产管理添加资产 3.1添加节点 3.2添加资产(点击 ...
- Azure 上通过Automation 实现定时开关虚拟机
更多内容,请关注公众号: Azure Automation 可以提供一些自动化的功能,比如我们可以指定在每天早上6点开启虚拟机,每天晚上8点关闭虚拟机.同时还提供一些基于监控参数的自动化配置.今天的主 ...
- (转)Python中的常见特殊方法—— repr方法
原文链接:https://www.cnblogs.com/tizer/p/11178473.html 在Python中有些方法名.属性名的前后都添加了双下划线,这种方法.属性通常都属于Python的特 ...
- border-box和CSS3 calc()解决盒模型加边框或边距后尺寸变大的问题
box-sizing box-sizing的CSS属性是用来改变默认的CSS框模型 属性 初始值:content-box 适用于:接受的所有元素的宽度或高度 继承:无 媒体:visual 指定的:as ...
- 【实习第十天】odoo开发基础整合
前言 发文时间是2019年7月19日.提一下学习odoo的感受,odoo目前在国内并不是很流行,且主流是在企业型软件,所以导致目前odoo在网上的文献很少,学习相对来说比其他框架吃力.以下为大家总结1 ...
- 白话 MVC、MVP、MVVP
白话 MVC.MVP.MVVP 注意这里单纯的通过例子来讲解 MVC MVP MVVP 这三种架构模式的起源和作用,不牵扯某种特定的语言.具体到各种语言各种软件系统上体现有所不同,但是原理都是这样的. ...
- Assets.xcassets:-1: Failed to find a suitable device for the type IBSimDeviceTypeiPad2x
Assets.xcassets:-1: Failed to find a suitable device for the type IBSimDeviceTypeiPad2x 不知道assets发生了 ...