[FJOI 2016] 神秘数
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=4408
[算法]
首先考虑一组询问怎样做 :
将数组按升序排序 , 假设我们现在可以表示出[1 , x]范围的数 , 加入一个数Ai , 则Ai必须满足 :
Ai <= x + 1
若不满足 , 答案即为(x + 1)
如何处理多组询问呢?
考虑建立可持久化线段树 , 维护一段区间中小于或等于某个数的数的权值和
设当前答案为ans
在可持久化线段树中查询区间[l , r]中 <= ans的数的和x
若x >= ans , 则ans = x + 1
否则答案为(ans + 1)
时间复杂度 : O(NlogN ^ 2)
[代码]
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int N = 1e5 + ; int n , m;
int a[N] , rt[N]; struct Presitent_Segment_Tree
{
int sz;
int lc[N * ] , rc[N * ] , sum[N * ];
Presitent_Segment_Tree()
{
sz = ;
}
inline void modify(int &now , int old , int l , int r , int x , int value)
{
now = ++sz;
lc[now] = lc[old] , rc[now] = rc[old];
sum[now] = sum[old] + value;
if (l == r) return;
int mid = (l + r) >> ;
if (mid >= x) modify(lc[now] , lc[old] , l , mid , x , value);
else modify(rc[now] , rc[old] , mid + , r , x , value);
}
inline int query(int rt1 , int rt2 , int l , int r , int ql , int qr)
{
if (l == ql && r == qr)
return sum[rt1] - sum[rt2];
int mid = (l + r) >> ;
if (mid >= qr) return query(lc[rt1] , lc[rt2] , l , mid , ql , qr);
else if (mid + <= ql) return query(rc[rt1] , rc[rt2] , mid + , r , ql , qr);
else return query(lc[rt1] , lc[rt2] , l , mid , ql , mid) + query(rc[rt1] , rc[rt2] , mid + , r , mid + , qr);
}
} PST; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
} int main()
{ read(n);
for (int i = ; i <= n; ++i) read(a[i]);
for (int i = ; i <= n; ++i) PST.modify(rt[i] , rt[i - ] , , (int)1e9 , a[i] , a[i]);
read(m);
while (m--)
{
int l , r;
read(l); read(r);
int ans = , res = ;
while (true)
{
res = PST.query(rt[r] , rt[l - ] , , (int)1e9 , , ans);
if (res >= ans) ans = res + ;
else break;
}
printf("%d\n" , ans);
} return ; }
[FJOI 2016] 神秘数的更多相关文章
- [BZOJ4408][Fjoi 2016]神秘数
[BZOJ4408][Fjoi 2016]神秘数 试题描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1 ...
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
- BZOJ 4408: [Fjoi 2016]神秘数
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 464 Solved: 281[Submit][Status ...
- BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树
4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...
- 【BZOJ4408】[Fjoi 2016]神秘数 主席树神题
[BZOJ4408][Fjoi 2016]神秘数 Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1 ...
- 4408: [Fjoi 2016]神秘数
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 452 Solved: 273 [Submit][Stat ...
- BZOJ 4408: [Fjoi 2016]神秘数 [主席树]
传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...
- ●BZOJ 4408 [Fjoi 2016]神秘数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 题解: 主席树 首先,对于一些数来说, 如果可以我们可以使得其中的某些数能够拼出 1- ...
- BZOJ4408&4299[Fjoi 2016]神秘数——主席树
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...
- bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...
随机推荐
- css 中的浮动
css中 浮动的作用: 使元素脱离正常的文档流并使其移动到其父元素的“最左边”或“最右边”. css中 浮动的特点: 1)改变元素类型,使元素支持宽高: 2)半脱离文档流: 3)文本环绕: 4)顶对齐 ...
- 页面登陆框老是乱乱的?banner跨页图片缩小之后总是在側面不能显示主要部分?哈哈~我来帮你忙~~
有banner背景图片和登陆框的html.css排布 目的:无论页面大小,背景图片都要居中(显示图片中间主要内容,而不是側面的一些东西),登陆框基本能在页面内显示. 盒子的排列应该是这种: <d ...
- 基于ACCESS和ASP的SQL多个表查询与计算统计代码(一)
近期在写几个关于"Project - Subitem - Task"的管理系统,说是系统还是有点夸大了,基本就是一个多表查询调用和insert.update的数据库操作.仅仅是出现 ...
- javascript一些面试经常使用的问题总结
有关函数调用变量问题 var a =10; function aaa(){ alert(a); } function bbb(){ var a = 20; aaa(); //10 } bbb(); 变 ...
- One usage of recurison: the tower of Hanoi
Statements: This blog was written by me, but most of content is quoted from book[Data Structure wit ...
- Android相关工具下载(ADT、NDK等等)
一个非常牛掰的网站,可以下载很多Android相关的工具等 网址为: http://www.androiddevtools.cn/
- 搭建spark中需要注意的问题
在搭建spark的过程中遇到了许多的问题,但是引起这些问题的原因都是因为环境变量没有设置好导致的,这里总结的一些优秀的博文,可以供以后参考 http://www.powerxing.com/insta ...
- 笔记04 WPF的Binding
oneWay:使用 OneWay 绑定时,每当源发生变化,数据就会从源流向目标. OneTime: 绑定也会将数据从源发送到目标:但是,仅当启动了应用程序或 DataContext 发生更改时才会如此 ...
- PHP部分--file图片上传服务器、图片路径存入数据库,并读取
前端代码 <form action="shangchuan.php" method="post" enctype="multipart/form ...
- ecshop 国付宝支付接口
function get_code($order, $payment){ $version = '2.2'; $charset = '1'; $language = '1'; $signType = ...