计算圆周率

[root@mini1 bin]# ./run-example SparkPi

[root@mini1 bin]# ./run-example SparkPi 

[root@mini1 bin]# ./run-example SparkPi 

运行spark-shell的两种方式:

1直接运行spark-shell

  单机通过多线程跑任务,只运行一个进程叫submit

2运行spark-shell --master spark://mini1:7077

  将任务运行在集群中,运行submit在master上,运行executor在worker上

启动

[root@mini1 bin]# ./spark-shell

hdfs

hadoop/sbin/start-dfs.sh

计算wordcount

 sc.textFile("/root/words.txt").flatMap(_.split(" ")).map((_,)).reduceByKey(_+_).collect

升序,降序排列

mapReduce执行流程

从hdfs采集数据

上传文件 hdfs dfs -put words.txt /

sc.textFile("hdfs://mini1:9000/words.txt").flatMap(_.split(" ")).map((_,)).reduceByKey(_+_).sortBy(_._2,false).collect

通过spark的api写wordcount

本地运行

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} /**
* Created by Administrator on 2019/6/11.
*/
object WordCount extends App {
//创建conf,设置应用的名字和运行的方式,local[2]运行2线程,产生两个文件结果 val conf = new SparkConf().setAppName("wordcount").setMaster("local[2]") //创建sparkcontext
val sc = new SparkContext(conf) val file: RDD[String] = sc.textFile("hdfs://mini1:9000/words.txt")
val words: RDD[String] = file.flatMap(_.split(" "))
//压平,分割每一行数据为每个单词
val tuple: RDD[(String, Int)] = words.map((_, 1))
//将单词转换为(单词,1)
val result: RDD[(String, Int)] = tuple.reduceByKey(_ + _)
//将相同的key进行汇总聚合
val resultSort: RDD[(String, Int)] = result.sortBy(_._2, false) //排序
// result.collect() //在命令行打印
resultSort.foreach(println) }

集群运行

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} /**
* Created by Administrator on 2019/6/11.
*/
object WordCount {
def main(args: Array[String]) { //创建conf,设置应用的名字和运行的方式,local[2]运行2线程,产生两个文件结果
//.setMaster("local[1]")采用1个线程,在本地模拟spark运行模式
val conf = new SparkConf().setAppName("wordcount") //创建sparkcontext
val sc = new SparkContext(conf) val file: RDD[String] = sc.textFile("hdfs://mini1:9000/words.txt")
val words: RDD[String] = file.flatMap(_.split(" "))
//压平,分割每一行数据为每个单词
val tuple: RDD[(String, Int)] = words.map((_, 1))
//将单词转换为(单词,1)
val result: RDD[(String, Int)] = tuple.reduceByKey(_ + _)
//将相同的key进行汇总聚合
val resultSort: RDD[(String, Int)] = result.sortBy(_._2, false) //排序
resultSort.saveAsTextFile(args(1)) } }

打包

把该代码包传到任意一台装有spark的机器上

我上传到了bin下

提交

[root@mini1 bin]# ./spark-submit --help
#开始加了这两个参数 导致一直运行失败,链接超时,还去问了初夏老师
[root@mini1 bin]# ./spark-submit --master spark://mini1:7077--class com.cyf.WordCount --executor-memory 200M --total-executor-cores 1 original-spark_6_01-1.0-SNAPSHOT.jar hdfs://mini1:9000/words.txt hdfs://mini1:9000/ceshi/wordcountcluster

[root@mini1 bin]#./spark-submit --master spark://mini1:7077 --class com.cyf.WordCount  original-spark_6_01-1.0-SNAPSHOT.jar hdfs://mini1:9000/words.txt hdfs://mini1:9000/ceshi/wordcountcluster

开始加上边两个参数运行,一直报连接超时的错误

后来把参数去掉,运行成功了

python

wo.py

#!/usr/bin/python

from pyspark import SparkContext, SparkConf

conf = SparkConf().setAppName("aaa").setMaster("spark://mini1:7077")
sc = SparkContext(conf=conf)
data = ["tom", "lilei", "tom", "lilei", "wangsf"]
rdd = sc.parallelize(data).map(lambda x: (x, )).reduceByKey(lambda a, b: a + b).saveAsTextFile("hdfs://mini1:9000/ceshi/python2")

上传,运行

[root@mini1 bin]# ./spark-submit wo.py

大数据学习——spark学习的更多相关文章

  1. 【福利】送Spark大数据平台视频学习资料

    没有套路真的是送!! 大家都知道,大数据行业spark很重要,那话我就不多说了,贴心的大叔给你找了份spark的资料.   多啰嗦两句,一个好的程序猿的基本素养是学习能力和自驱力.视频给了你们,能不能 ...

  2. 【互动问答分享】第8期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    “决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第8期互动问答分享] Q1:spark线上用什么版本好? 建议从最低使用的Spark 1.0.0版本,Spark在1.0.0开始核心 ...

  3. 【互动问答分享】第15期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    "决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第15期互动问答分享] Q1:AppClient和worker.master之间的关系是什么? AppClien ...

  4. 【互动问答分享】第13期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    “决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第13期互动问答分享] Q1:tachyon+spark框架现在有很多大公司在使用吧? Yahoo!已经在长期大规模使用: 国内也有 ...

  5. 【互动问答分享】第10期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    “决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第10期互动问答分享] Q1:Spark on Yarn的运行方式是什么? Spark on Yarn的运行方式有两种:Client ...

  6. 【互动问答分享】第7期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    “决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第7期互动问答分享] Q1:Spark中的RDD到底是什么? RDD是Spark的核心抽象,可以把RDD看做“分布式函数编程语言”. ...

  7. 【互动问答分享】第6期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    “决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第6期互动问答分享] Q1:spark streaming 可以不同数据流 join吗? Spark Streaming不同的数据流 ...

  8. 【大数据】Hive学习笔记

    第1章 Hive基本概念 1.1 什么是Hive Hive:由Facebook开源用于解决海量结构化日志的数据统计. Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表, ...

  9. 大数据-spark-hbase-hive等学习视频资料

    不错的大数据spark学习资料,连接过期在评论区评论,再给你分享 https://pan.baidu.com/s/1ts6RNuFpsnc39tL3jetTkg

  10. 想转行大数据,开始学习 Hadoop?

    学习大数据首先要了解大数据的学习路线,首先搞清楚先学什么,再学什么,大的学习框架知道了,剩下的就是一步一个脚印踏踏实实从最基础的开始学起. 这里给大家普及一下学习路线:hadoop生态圈——Strom ...

随机推荐

  1. 利用mysqldump备份magento数据库

    在Magento开发和维护过程中,经常需要将Magento的数据库导出.导入,这些工作可以通过mysqldump这个工具来实现. 下面我来简单介绍一下mysqldump在导出导入Magento dat ...

  2. Java实现将GBK编码格式的文件夹中所有文件都转化为UTF-8格式的文件,编码格式转化

    package CodeConvert; import Java.io.BufferedReader; import java.io.BufferedWriter; import java.io.Fi ...

  3. 关于React的require添加动态变化的路径

    关于React的require添加动态变化的路径 直接这样写显然是不会有错误的 let path = require('../images/girl.png'); 但是如果你尝试着 var gg = ...

  4. 行框基线位置确定(line box 基线)

    在设置vertical-align属性(只有inline元素有效,对inline-block和block元素无效)时有一个属性值:baseline,那么这个基线是什么,怎么确定. 这个基线就是其所在行 ...

  5. Junit-@Annotation-动态代理-类加载器

    一.测试单元     概述:用于测试JAVA代码的工具类,已内置在Eclipse中;     格式:         1.在方法的上面添加@Test;         2.对被测试的方法的要求:权限- ...

  6. UIButton 图片文字位置

    在实际开发过程中经常在按钮上添加文字和图片,位置和图片的位置根据需求放置也是不一样的.下面实现了各种显示方式,如下图: UIButton+LSAdditions.h // // UIButton+LS ...

  7. {Linux} boot仅剩余XX字节

    1. 查看已安装的linux-image各版本 dpkg --get-selections |grep linux-image   2. 查看我们当前使用的是哪一个版本: uname -a    3. ...

  8. div高度不能自适应(子级使用float浮动,父级div高度不能自适应)

    1.问题截图: 2.问题描述: 由于地址.公司名长度的不定性,所以每一条地址所在的父级div高度不定,但是需要设置一个最小的高度min-height:48px;但是当内容增加的时候,父级div高度却不 ...

  9. 【Python图像特征的音乐序列生成】如何生成旋律(大纲),以及整个项目的全部流程

    今天连看三篇论文,不是很细致地看,也没有具体去实现,只是大概明白了一些新思路.这三篇论文,一篇概述了Decoder-Encoder模型,一篇延伸这个模型,首次提出了Attention机制,最后一篇详细 ...

  10. 为什么我的C4C Service Request没办法Release到ERP?

    问题 UI上发现找不到Release to ERP的按钮: 但是在UI Designer里是能看到这个按钮的.检查其Visible的属性,绑到了一个Calculated Rule上面: 发现其显示在r ...