Closest Common Ancestors
Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 18013   Accepted: 5774

Description

Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form:

nr_of_vertices 
vertex:(nr_of_successors) successor1 successor2 ... successorn 
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
nr_of_pairs 
(u v) (x y) ...

The input file contents several data sets (at least one). 
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
For example, for the following tree: 

Sample Input

5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)

Sample Output

2:1
5:5
有向图求LCA,注意输入的处理。
有向图只有一个树根,利用并查集求树根。无向图中可选任意一点作树根,在dfs是比有向图多一个条件,详情见代码。
#include"cstdio"
#include"cstring"
#include"vector"
using namespace std;
const int MAXN=;
int V;
vector<int> G[MAXN];
int par[MAXN];
void prep()
{
for(int i=;i<=MAXN;i++)
{
par[i]=i;
}
}
int fnd(int x)
{
if(par[x]==x)
return x;
return par[x]=fnd(par[x]);
}
void unite(int father,int son)
{
par[son]=fnd(father);
}
int fa[MAXN],dep[MAXN];
void dfs(int u,int father,int d)
{
fa[u]=father,dep[u]=d;
for(int i=;i<G[u].size();i++)
dfs(G[u][i],u,d+);//在无向图中 需要加上 if(G[u][i]!=father)
}
int lca[MAXN];
int LCA(int u,int v)
{
while(dep[u]>dep[v]) u=fa[u];
while(dep[v]>dep[u]) v=fa[v];
while(u!=v)
{
u=fa[u];
v=fa[v];
}
return u;
}
int main()
{
while(scanf("%d",&V)!=EOF)
{
for(int i=;i<=V;i++) G[i].clear();
prep();
memset(lca,,sizeof(lca));
for(int i=;i<V;i++)
{
int u,t;
scanf("%d:(%d)",&u,&t);
while(t--)
{
int v;
scanf("%d",&v);
G[u].push_back(v);
unite(u,v);
}
}
int root=fnd();
dfs(root,-,);
int Q;
scanf("%d",&Q);
while(true)
{
char ch=getchar();
if(ch=='(')
{
int u,v;
scanf("%d %d",&u,&v);
int a=LCA(u,v);
lca[a]++;
Q--;
getchar();//不能丢,有开就有闭
}
if(Q==) break;
}
for(int i=;i<=V;i++)
{
if(lca[i]!=) printf("%d:%d\n",i,lca[i]);
}
}
return ;
}

tarjan+并查集离线算法

#include"cstdio"
#include"cstring"
#include"vector"
using namespace std;
const int MAXN=;
int V;
vector<int> G[MAXN];
int que[MAXN][MAXN];
int vis[MAXN];
int par[MAXN];
int cnt[MAXN];
void prep()
{
for(int i=;i<=MAXN;i++)
par[i]=i;
}
int fnd(int x)
{
if(par[x]==x)
return x;
return par[x]=fnd(par[x]);
}
void unite(int father,int son)
{
par[son]=fnd(father);
}
void dfs(int u)
{
for(int i=;i<=V;i++)
if(vis[i]&&que[u][i])
{
int fa=fnd(i);//fa 为u与i的LCA
cnt[fa]+=que[u][i];
}
vis[u]=;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
dfs(v);
unite(u,v);
}
}
int indeg[MAXN];
int main()
{
while(scanf("%d",&V)!=EOF)
{
prep();
for(int i=;i<=V;i++) G[i].clear();
memset(que,,sizeof(que));
memset(vis,,sizeof(vis));
memset(cnt,,sizeof(cnt));
memset(indeg,,sizeof(indeg));
for(int i=;i<V;i++)
{
int u,t;
scanf("%d:(%d)",&u,&t);
while(t--)
{
int v;
scanf("%d",&v);
G[u].push_back(v);
indeg[v]++;
}
}
int Q;
scanf("%d",&Q);
while(Q--)
{
int u,v;
scanf(" (%d %d)",&u,&v);
que[u][v]++;
que[v][u]++;
}
for(int i=;i<=V;i++)
if(!indeg[i])//入度为0的点为根节点
{
dfs(i);
break;
}
for(int i=;i<=V;i++)
if(cnt[i]!=) printf("%d:%d\n",i,cnt[i]);
}
return ;
}

POJ(有向图求LCA)的更多相关文章

  1. POJ 1986:Distance Queries(倍增求LCA)

    http://poj.org/problem?id=1986 题意:给出一棵n个点m条边的树,还有q个询问,求树上两点的距离. 思路:这次学了一下倍增算法求LCA.模板. dp[i][j]代表第i个点 ...

  2. 树上倍增求LCA及例题

    先瞎扯几句 树上倍增的经典应用是求两个节点的LCA 当然它的作用不仅限于求LCA,还可以维护节点的很多信息 求LCA的方法除了倍增之外,还有树链剖分.离线tarjan ,这两种日后再讲(众人:其实是你 ...

  3. POJ 1330(LCA/倍增法模板)

    链接:http://poj.org/problem?id=1330 题意:q次询问求两个点u,v的LCA 思路:LCA模板题,首先找一下树的根,然后dfs预处理求LCA(u,v) AC代码: #inc ...

  4. Tarjan算法离线 求 LCA(最近公共祖先)

    本文是网络资料整理或部分转载或部分原创,参考文章如下: https://www.cnblogs.com/JVxie/p/4854719.html http://blog.csdn.net/ywcpig ...

  5. 树链剖分求LCA

    树链剖分中各种数组的作用: siz[]数组,用来保存以x为根的子树节点个数 top[]数组,用来保存当前节点的所在链的顶端节点 son[]数组,用来保存重儿子 dep[]数组,用来保存当前节点的深度 ...

  6. 树上倍增求LCA(最近公共祖先)

    前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳 ...

  7. [算法]树上倍增求LCA

    LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...

  8. 【树链剖分】洛谷P3379 树链剖分求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  9. 【倍增】洛谷P3379 倍增求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

随机推荐

  1. pooler [转]

    pooler和poolboy都是用erlang写的管理进程池的库. pooler/poolboygithub : seth/pooler · GitHubgithub : devinus/poolbo ...

  2. Erlang服务器内存吃紧的优化解决方法

    问题提出:服务器100万人在线,16G内存快被吃光.玩家进程占用内存偏高 解决方法: 第一步:erlang:system_info(process_count). 查看进程数目是否正常,是否超过了er ...

  3. Linux - 命令行 管道(Pipelines) 具体解释

    命令行 管道(Pipelines) 具体解释 本文地址: http://blog.csdn.net/caroline_wendy/article/details/24249529 管道操作符" ...

  4. delphi Base64编码/解码及数据压缩/解压知识

    一.Base64编码/解码 一般用到的是Delphi自带的单元EncdDecd,当然还有第三方提供的单元或控件,其中我所接触到的认为比较好的有Indy的TIdMimeEncode / TIdMimeD ...

  5. linux自动ftp上传与下载文件的简单脚本

    #!/bin/sh cd /data/backup/55mysql DATE=`date +'%Y%m%d'`file="55_mysql_"$DATE"03*.rar& ...

  6. asp.net mvc 中"未找到路径“/favicon.ico”的控制器或该控制器未实现 IController。"

    FavIcon.ico是一个特殊的文件,它是浏览器请求一个网站时出现的.某些浏览器在书签和收藏夹中使用这个图标.在与这些图标相关的网站被打开时,某些浏览器也在标题栏或浏览器标签中中显示这个图标. 当一 ...

  7. 【题解】P3258松鼠的新家

    [题解][P3258 JLOI2014]松鼠的新家 树链剖分板子题. 总结一点容易写错的地方吧: if(d[top[u]]<d[top[v]]) swap(u,v);注意是\(top\). 在\ ...

  8. 【shell】判断一个变量是否为空

    #!/bin/bash argv=" if [ -z "$argv" ] then echo "argv is empty" else echo &q ...

  9. Django的模型层(2)---多表操作

    多表操作 创建模型 实例:我们来假定下面这些概念,字段和关系 作者模型:一个作者有姓名和年龄. 作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息.作者详情模型和作者模型之间是一对 ...

  10. PAT 甲级 1116. Come on! Let's C (20) 【循环判断】

    题目链接 https://www.patest.cn/contests/pat-a-practise/1116 思路 注意一个细节 如果没有本来 ID 的 后来又查了这个ID 不是输出 checked ...