Luogu P3938 斐波那契
Luogu P3938 斐波那契
第一眼看到这题,想到的是LCA,于是开始想怎么建树,倒是想出了\(n^{2}\)算法,看了下数据范围,果断放弃
想了想这数据范围,大的有点不正常,这让我想起了当年被小凯支配的恐惧QAQ
看了大约\(\mathcal{10min}\)后找出规律:根节点减去一个最接近它的小于等于它的Fibonacci数列中的数,就是它的父亲节点
然后就很简单了,先把Fibonacci打表,然后二分查找(\(\mathfrak{STL}\)大法好)
最后注意一点:不要忘了开\(\tt{long long}\)
夸赞一句:这个题思路真奇妙
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
ll f[1000010],tot;
ll read(){
ll k=0; char c=getchar();
for(;c<'0'||c>'9';) c=getchar();
for(;c>='0'&&c<='9';c=getchar())
k=(k<<3)+(k<<1)+c-48;
return k;
}
int main(){
f[0]=f[1]=1;
for(int i=2;f[i-1]<=1e12;i++){
f[i]=f[i-1]+f[i-2];
tot++;
}
int m=read();
while(m--){
ll x=read(),y=read();
if(x==y){
printf("%lld\n",x); continue;
}
while(x!=y){
if(x<y) swap(x,y);
int pos=lower_bound(f+1,f+tot+1,x)-f-1;
x-=f[pos];
}
if(x) printf("%lld\n",x);
else printf("1");
}
return 0;
}
Luogu P3938 斐波那契的更多相关文章
- [luogu]P3938 斐波那契[数学]
[luogu]P3938 斐波那契 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚 ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- 2019.8.3 NOIP模拟测试12 反思总结【P3938 斐波那契,P3939 数颜色,P3940 分组】
[题解在下面] 早上5:50,Gekoo同学来到机房并表态:“打暴力,打暴力就对了,打出来我就赢了.” 我:深以为然. (这是个伏笔) 据说hzoi的人还差两次考试[现在是一次了]就要重新分配机房,不 ...
- [Luogu P3986] 斐波那契数列 (逆元)
题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- Luogu P1306 斐波那契公约数
这道题其实是真的数学巨佬才撸的出来的题目了 但如果只知道结论但是不知道推导过程的我感觉证明无望 首先这道题肯定不能直接搞,而且题目明确说明了一些方法的问题 所以就暗示我们直接上矩阵了啦 但是如果直接搞 ...
- P3938 斐波那契
思路 脑子还真的是好东西,自己太笨了 容易发现父亲节点和儿子节点的关系 儿子节点大于父亲节点 儿子节点和父亲节点之差为斐波那契数,且斐波那契数为小于儿子节点的最大的一个 1e12中有60左右的斐波那契 ...
- 洛谷P3938 斐波那契
题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...
- [LUOGU] P1962 斐波那契数列
求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...
随机推荐
- C++继承详解:共有(public)继承,私有(private)继承,保护(protected)继承
公有继承(public).私有继承(private).保护继承(protected)是常用的三种继承方式. 1. 公有继承(public) 公有继承的特点是基类的公有成员和保护成员作为派生类的成员时, ...
- DP简单问题联系--最长递增子序列+最长公共子序列等
今天重温了一下dp问题,发现自己两个礼拜不写题目就什么都不会了...心态爆炸,感觉去考试怕是要gg了... 不过今天总结一下写的题目,全部都是基础的dp问题 第一个是 求最长不下降子序列的长度 第一行 ...
- Ogre 中使用OIS的两种模式
关于OIS的输入 要开始考虑游戏输入的问题了,以及开始加入CEGUI也要考虑加入输入的问题.先把OIS的输入简单回忆一下. OIS有两种输入模式:非缓冲输入以及缓冲输入. 无论用哪种输入方式,都应该有 ...
- 记一次因证书问题导致请求失败问题SSLHandshakeException
记一次因证书问题导致请求失败问题SSLHandshakeException 转载请注明出处:https://www.cnblogs.com/funnyzpc/p/10989813.html 最近接一外 ...
- C#主从表查询
软件的使用必然涉及到主表和子表的操作,我们先在SQLite中创建子表.比如 创建一学生信息表做主表,再创建一个学生成绩表做子表.然后我们在程序中成绩 方法来连接子表. 判断bindingsource中 ...
- Git - Merge: refusing to merge unrelated histories
场景 我在本地有个代码仓库local-A,本地仓库local-A已经和一个远程仓库remote-A关联了. 接着我又在GitHub上新建了一个仓库remote-B,我希望将本地仓库local-A的本地 ...
- shell学习(3)- grep
常用选项 -E :开启扩展(Extend)的正则表达式. -i :忽略大小写(ignore case). -v :反过来(invert), 显示不包含匹配文本的所有行. -V 或 --vers ...
- 浏览器启动android应用
window.location.href = "xl://com.caho.app:8888/app?name=chao"; <activity> <intent ...
- Codeforces 1106F(数论)
要点 998244353的原根g = 3,意味着对于任意\[1 <= x,y<p\]\[x\neq\ y\]\[g^x\%p\neq\ g^y\%p\]因此可以有构造序列\(q(a)与a一 ...
- Ubuntu 18.10 使用VMware克隆后,克隆后的机器再手动更改interfaces配置文件后无法启动网络的解决办法
克隆过程就略过了 配置interfaces root@client02:~# vim /etc/network/interfaces # interfaces() ) and ifdown() aut ...