将学习到什么

从 Jordan 标准型出发,能够获得非常有用的信息.
 


Jordan 矩阵的构造

Jordan 矩阵
\begin{align}
J=\begin{bmatrix} J_{n_1}(\lambda_1) & & \\ & \ddots & \\ && J_{n_k}(\lambda_k) \end{bmatrix} , \quad n_1+n_2+\cdots+n_k = n
\end{align}
有确定的构造,这种构造使得与之相似的任何矩阵都显然具有某些基本性质:

  • Jordan 块的个数 \(k\) (计入同样的 Jordan 块出现的次数)就是 \(J\) 的线性无关的特征向量的最大个数
  • 矩阵 \(J\) 可以对角化,当且仅当 \(k=n\), 即当且仅当所有的 Jordan 块都是 \(1\times 1\) 的
  • 与一个给定的特征值对应的 Jordan 块的个数就是该特征值的几何重数,它也就是其相伴的特征空间的维数. 与一个给定的特征值对应的所有 Jordan 块的阶之和就是它的代数重数
  • 设 \(A\in M_n\) 是一个给定的非零矩阵,假设 \(\lambda\) 是 \(A\) 的一个特征值. 利用Jordan 标准型定理中式 (8) 的定义,我们知道存在某个正整数 \(q\) ,使得
    \begin{align}
    r_1(A,\lambda) > r_2(A,\lambda) >\cdots >r_{q-1}(A,\lambda) >r_q(A,\lambda)=r_{q+1}(A,\lambda)
    \end{align}
    这个整数 \(q\) 就是 \(\lambda\) 作为 \(A\) 的特征值的指数;它也是 \(A\) 的以 \(\lambda\) 为特征值的最大 Jordan 块的阶.

 

矩阵与其转置的相似性

设 \(K_m\) 是 \(m\times m\) 反序矩阵(就是把单位矩阵 \(I_m\) 旋转 \(90^{\circ}\)), 它是对称的且是对合(\(A^2=I\))的:\(K_m=K_m^T=K_m^{-1}\).
可以验证 \(K_m J_m(\lambda)=J_m(\lambda)^T K_m\) 以及 \(J_m(\lambda) K_m=K_m J_m(\lambda)^T\), 从而 \(K_m J_m(\lambda)\) 与 \(J_m(\lambda) K_m\) 是对称的,且 \(J_m(\lambda)=K_m J_m(\lambda)^T K_m\),所以每一个 Jordan 块都相似于它的转置(通过一个反序矩阵). 这样一来,如果 \(J\) 是给定的 Jordan 矩阵,那么 \(J^T\) 与 \(J\) 通过对称的对合矩阵 \(K=K_{n_1}\oplus \cdots \oplus K_{n_k}\) 而相似:\(J^T=KJK\). 如果 \(S\in M_n\) 是非奇异的(不一定对称)且 \(A=SJS^{-1}\), 那么 \(J=S^{-1}AS\),
\begin{align}
A^T &=S^{-T}J^TS^T=S^{-T}KJKS^T=S^{-T}K(S^{-1}AS)KS^T \notag \\
&= (S^{-T}KS^{-1})A(SKS^T)=(SKS^T)^{-1}A(SKS^T)
\end{align}
且使得 \(A\) 与 \(A^T\) 之间的相似矩阵 \(SKS^T\) 是对称的. 这就证明了如下定理:
 
  定理 1: 设 \(A\in M_n\). 则存在一个非奇异的复对称矩阵 \(S\), 使得 \(A^T=SAS^{-1}\).
 
若记
\begin{align}
A=SJS^{-1}=(SKS^T)(S^{-T}KJS^{-1})=(SJKS^T)(S^{-T}KS^{-1})
\end{align}
其中 \(KJ\) 与 \(JK\) 是对称的, 等式是凑的,拆开一合并就成立了. 这一结论证明了如下的定理:
 
  定理 2: 每一个复方阵都是两个复对称矩阵的乘积,可以选择其中任一个因子是非奇异的.
 
对任意的域 \(\mathbf{F}\),已知 \(M_n({\mathbf{F}})\) 中的每个矩阵都可以通过 \(M_n({\mathbf{F}})\) 中某个对称矩阵相似于它的转置. 特别地,每一个实方阵都可以通过某个实对称矩阵与其转置相似.
 

几何重数-代数重数不等式

给定 \(A\in M_n\) 的一个特征值 \(\lambda\) 的几何重数是 \(A\) 的与 \(\lambda\) 对应的 Jordan 块的个数. 这个数小于或者等于与 \(\lambda\) 对应的所有 Jordan 块的阶之和,而这个和就是 \(\lambda\) 的代数重数. 于是,特征值的几何重数小于或者等于它的代数重数. 一个特征值 \(\lambda\) 的几何重数与代数重数相等,即 \(\lambda\) 是一个半单的特征值,当且仅当与 \(\lambda\) 对应的每一个 Jordan 块都是 \(1\times 1\) 的.
 

直和的 Jordan 标准型

设对 \(i=1,\cdots,m\) 给定 \(A_i\in M_{n_i}\), 并假设每一个 \(A_i=S_iJ_iS_i^{-1}\), 其中每一个 \(J_i\) 是一个 Jordan 矩阵. 这样,直和 \(A=A_1 \oplus \cdots \oplus A_m\) 就通过 \(S=S_1 \oplus \cdots \oplus S_m\) 相似于直和 \(J=J_1 \oplus \cdots \oplus J_m\). 此外, \(J\) 是 Jordan 块的直和的直和,所以它是一个 Jordan 矩阵,从而 Jordan 标准型的唯一性就保证了它是 \(A\) 的 Jordan 标准型.
 

秩 1 摄动的 Jordan 标准型

关于秩 1 摄动的特征值的 Brauer 定理对于 Jordan 块有类似的结论:在某种条件下,复方阵的一个特征值可能通过一个秩 1 摄动几乎任意地加以变动而不破坏该矩阵的 Jordan 结构的其余部分.
 
  定理 3:设 \(n \geqslant 2\), 又令 \(\lambda,\lambda_2,\cdots,\lambda_n\) 是 \(A\in M_n\) 的特征值. 假设存在非零的向量 \(x,y \in \mathbb{C}^n\), 使得 \(Ax=\lambda x\), \(y^*A=\lambda y^*\), 且 \(y^*x \neq 0\). 那么
  (a) 对某些正整数 \(k,n_1,\cdots,n_k\) 以及某个 \(\{v_1,\cdots,v_k\} \subset \{\lambda_2,\cdots,\lambda_n\}\), \(A\) 的 Jordan 标准型是
\begin{align}
[\lambda]\oplus J_{n_1}(v_1) \oplus \cdots \oplus J_{n_k}(v_k)
\end{align}
  (b) 对任何满足 \(\lambda+v^*x \neq \lambda_j(j=2,\cdots,n)\) 的 \(v \in \mathbb{C}^n\), \(A+xv^*\) 的 Jordan 标准型是
\begin{align}
[\lambda+v^*x]\oplus J_{n_1}(v_1) \oplus \cdots \oplus J_{n_k}(v_k)
\end{align}

Jordan 标准型的推论的更多相关文章

  1. Jordan 标准型定理

    将学习到什么 就算两个矩阵有相同的特征多项式,它们也有可能不相似,那么如何判断两个矩阵是相似的?答案是它们有一样的 Jordan 标准型.   Jordan 标准型定理 这节目的:证明每个复矩阵都与一 ...

  2. Jordan 标准型的实例

    将学习到什么 练习一下如何把一个矩阵化为 Jordan 标准型.   将矩阵化为 Jordan 标准型需要三步: 第一步 求出矩阵 \(A \in M_n\) 全部的特征值 \(\lambda_1,\ ...

  3. 【线性代数】 06 - Jordan标准型

    现在就来研究将空间分割为不变子空间的方法,最困难的是我们还不知道从哪里着手.你可能想到从循环子空间出发,一块一块地进行分割,但这个方案的存在性和唯一性都不能解决.不变子空间分割不仅要求每个子空间\(V ...

  4. 线性代数 | Jordan 标准型的笔记

    内容概述: 把方阵 A 的特征多项式 \(c(λ)=|λE-A|\) 展开成 \(c(λ)=\sum_ia_i\lambda^i\) 的形式,然后使用神乎其技的证明,得到 \(c(A)=O\),特征多 ...

  5. [转载] $\mathrm{Jordan}$标准型的介绍

    本文转载自陈洪葛的博客$,$ 而实际上来自xida博客朝花夕拾$,$ 可惜该博客已经失效 $\mathrm{Jordan}$ 标准形定理是线性代数中的基本定理$,$ 专门为它写一篇长文好像有点多余$: ...

  6. [Bilingual] Different proofs of Jordan cardinal form (Jordan标准型的几种证明)

  7. 实 Jordan 标准型和实 Weyr 标准型

    将学习到什么 本节讨论关于实矩阵的实形式的 Jordan 标准型,也讨论关于复矩阵的另外一种形式的 Jordan 标准型,因为它在与交换性有关的问题中很有用.   实 Jordan 标准型 假设 \( ...

  8. Jordan 块的几何

    设 $V$ 是复数域 $\mathbb{C}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换, $A\in M_n(\mathbb{C})$ 是 $\varphi$ 在某组 ...

  9. Jordan标准形

    一.引入 前面已经指出,一切n阶矩阵A可以分成许多相似类.今要在与A相似的全体矩阵中,找出一个较简单的矩阵来作为相似类的标准形.当然以对角矩阵作为标准形最好,可惜不是每一个矩阵都能与对角矩阵相似.因此 ...

随机推荐

  1. [WIP]用已有db进行rails开发

    创建: 2019/01/16 晚点补上 https://qiita.com/edo1z/items/a0bf22b294406f00ec7c https://qiita.com/kentosasa/i ...

  2. 萌新笔记之二叉搜索树(BST)

    前言,以前搞过线段树,二叉树觉得也就那样= =.然后数据结构的课也没怎么听过,然后下周期中考... 本来以为今天英语考完可以好好搞ACM了,然后这个数据结构期中考感觉会丢人,还是好好学习一波. 二叉搜 ...

  3. java读取properties文件的配置信息

    项目开发中,我们一般来向 application.properties 文件中放一些全局配置变量,以便程序中读取使用,本篇内容来演示从properties配置文件中读取键值. 当然,我们不一定写入 a ...

  4. Unity3D研究院之IOS Android支持中文与本地文件的读取写

       前几天有个朋友问我为什么在IOS平台中可以正常的读写文件可是在Android平台中就无法正常的读写.当时因为在上班所以我没时间来帮他解决,晚上回家后我就拿起安卓手机真机调试很快就定位问题所在,原 ...

  5. perl 安装LOG4perl 模块

    环境信息 ubuntu 12.04 64位 桌面版 Log-Log4perl 的介绍网址:http://search.cpan.org/~mschilli/Log-Log4perl-1.49/lib/ ...

  6. perl C/C++ 扩展(五)

    perl 的C++扩展,返回值为自定义类型. 在 perl C/C++扩展(三) 中,我已经介绍了,如何让perl 认识 c++的类,但是前面的介绍中,包括我参考的博客http://chunyemen ...

  7. 密码破解工具John the Ripper使用说明

    John the Ripper John 包描述 John the Ripper 既功能丰富又运行快速. 它在一个程序中结合了几种破解模式,并且可以根据您的特定需求进行全面地配置(你甚至可以使用支持C ...

  8. 如何使用LESS 深度定制Bootstrap

    一.LESS是什么? Less 是一门 CSS 预处理语言,它扩展了 CSS 语言,增加了变量.Mixin.函数等特性,使 CSS 更易维护和扩展. 中文介绍:http://lesscss.cn/ 有 ...

  9. php—cURL库基本用法总结

    作用 用来连接客户端和服务器端,实从互联网上获取资源 常用接口 curl_init(): 初始化curl curl_close: 结束curl,释放资源 curl_setopt: 设置curl的属性 ...

  10. hdu6313( 2018 Multi-University Training Contest 2)

    bryce1010模板 http://acm.hdu.edu.cn/showproblem.php?pid=6313 参考dls的讲解: 以5*5的矩阵为例: 后一列分别对前一列+0+1+2+3+4操 ...