BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】
题目
在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。
现在他想计算这样一个函数的值:
S(i, j)表示第二类斯特林数,递推公式为:
S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。
边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)
你能帮帮他吗?
输入格式
输入只有一个正整数
输出格式
输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000
输入样例
3
输出样例
87
题解
当第二类斯特林数\(j > i\)时值为\(0\)
所以我们实际求:
ans &= \sum\limits_{i = 0}^{n} \sum\limits_{j = 0}^{n} \begin{Bmatrix} i \\ j \end{Bmatrix} 2^{j}j! \\
&= \sum\limits_{i = 0}^{n} \sum\limits_{j = 0}^{n} 2^{j}j! \frac{1}{j!} \sum\limits_{k = 0}^{j} (-1)^{k}{j \choose k}(j - k)^{i} \\
&= \sum\limits_{i = 0}^{n} \sum\limits_{j = 0}^{n} 2^{j}j! \sum\limits_{k = 0}^{j} \frac{(-1)^{k}}{k!} * \frac{(j - k)^{i}}{(j - k)!} \\
&= \sum\limits_{j = 0}^{n} 2^{j}j! \sum\limits_{k = 0}^{j} \frac{(-1)^{k}}{k!} * \frac{\sum\limits_{i = 0}^{n} (j - k)^{i}}{(j - k)!} \\
\end{aligned}
\]
NTT即可
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const int G = 3,P = 998244353;
int fac[maxn],fv[maxn],inv[maxn],bin[maxn],g[maxn];
int L,R[maxn],A[maxn],B[maxn],n,m,N;
inline int qpow(int a,int b){
int ans = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) ans = 1ll * ans * a % P;
return ans;
}
void init(){
fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
bin[0] = 1; bin[1] = 2;
g[0] = 1; g[1] = N + 1;
for (int i = 2; i <= N; i++){
fac[i] = 1ll * fac[i - 1] * i % P;
inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[i] = 1ll * fv[i - 1] * inv[i] % P;
bin[i] = 2ll * bin[i - 1] % P;
g[i] = 1ll * (1ll * qpow(i,N + 1) - 1 + P) % P * inv[i - 1] % P;
}
}
void NTT(int* a,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
int gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k]; y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P; a[j + k + i] = ((x - y) % P + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
int main(){
N = read();
init();
for (int i = 0; i <= N; i++){
A[i] = ((i & 1) ? -1ll : 1ll) * fv[i] % P;
B[i] = 1ll * g[i] * fv[i] % P;
}
m = N + N; L = 0;
for (n = 1; n <= m; n <<= 1) L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(A,1); NTT(B,1);
for (int i = 0; i < n; i++) A[i] = 1ll * A[i] % P * B[i] % P;
NTT(A,-1);
int ans = 0;
for (int i = 0; i <= N; i++)
ans = (ans + 1ll * bin[i] * fac[i] % P * A[i] % P) % P;
printf("%d\n",(ans % P + P) % P);
return 0;
}
BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】的更多相关文章
- bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...
- BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)
题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...
- 【BZOJ4555】【TJOI2016】【HEOI2016】求和 第二类斯特林数 NTT
题目大意 求\(f(n)=\sum_{i=0}^n\sum_{j=0}^i2^j\times j!\times S(i,j)\\\) 对\(998244353\)取模 \(n\leq 100000\) ...
- 【BZOJ4555】【TJOI2016】【HEOI2016】求和 (第二类斯特林数+NTT卷积)
Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: $$f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\tim ...
- P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)
传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
- bzoj 5093 图的价值 —— 第二类斯特林数+NTT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...
- bzoj5093:图的价值(第二类斯特林数+NTT)
传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...
- BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...
随机推荐
- install cmake,install torch7
cmake http://blog.csdn.net/jesse__zhong/article/details/21290675 torch7 http://wanghaitao8118.blog.1 ...
- css布局:块级元素的居中
一.定宽: 1.定位居中(absolute) 方法一: html: <div class="main"></main> css: .main{ width: ...
- Mycat高可用解决方案三(读写分离)
Mycat高可用解决方案三(读写分离) 一.系统部署规划 名称 IP 主机名称 配置 192.168.199.112 mycat01 2核/2G Mysql主节点 192.168.199.110 my ...
- 5-1 json模块
1.json.loads(json_str) 把字符串(json串)转成字典 import json # 解析json的 json_str = ''' {"name":" ...
- Python_常用模块
一.内置模块 定义:其实模块简单说就是一堆代码实现某个功能,它们是已经写好的.py文件.只需要用import应用即可. 分类: 1. 自定义模块,就是自己写的.py文件为了实现某个功能. 2. 内置标 ...
- CentOS Linux release 7.6.1810全新安装 Zimbra 8.8.12邮箱
1.1 基础环境配置 1.1.1 主机名配置 [root@mail ~]# hostnamectl --static set-hostname mail.example.com [root@mai ...
- vue.js 图表chart.js使用
在使用这个chart.js之前,自己写过一个饼图,总之碰到的问题不少,所以能用现成的插件就用,能节省不少时间 这里不打算介绍chart.js里面详细的参数意义和各个参数的用法,只作为首次使用chart ...
- 【Python】剑指offer 14:剪绳子
题目:给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],-,k[m].请问k[0]k[1]-*k[m]可能的最大乘积是多少 ...
- 动态规划:HDU2571-命运
解题心得: 1.其实是一个简单的动态规划加上贪心的思想,思路简单,只需要求每一步的最大值就可以了,但是要注意读懂题. 2.走的规则:从左上角开始走,达到右下角,只能向右走一步,或者向下走一步,或者走列 ...
- Python 代码优化技巧(一)
Table of Contents 1. 代码优化Part1 1.1. if 判断的短路特性 1.2. join 合并字符串 1.3. while 1 和 while True 1.4. cProfi ...