题目

在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。

现在他想计算这样一个函数的值:



S(i, j)表示第二类斯特林数,递推公式为:

S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。

边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)

你能帮帮他吗?

输入格式

输入只有一个正整数

输出格式

输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000

输入样例

3

输出样例

87

题解

当第二类斯特林数\(j > i\)时值为\(0\)

所以我们实际求:

\[\begin{aligned}
ans &= \sum\limits_{i = 0}^{n} \sum\limits_{j = 0}^{n} \begin{Bmatrix} i \\ j \end{Bmatrix} 2^{j}j! \\
&= \sum\limits_{i = 0}^{n} \sum\limits_{j = 0}^{n} 2^{j}j! \frac{1}{j!} \sum\limits_{k = 0}^{j} (-1)^{k}{j \choose k}(j - k)^{i} \\
&= \sum\limits_{i = 0}^{n} \sum\limits_{j = 0}^{n} 2^{j}j! \sum\limits_{k = 0}^{j} \frac{(-1)^{k}}{k!} * \frac{(j - k)^{i}}{(j - k)!} \\
&= \sum\limits_{j = 0}^{n} 2^{j}j! \sum\limits_{k = 0}^{j} \frac{(-1)^{k}}{k!} * \frac{\sum\limits_{i = 0}^{n} (j - k)^{i}}{(j - k)!} \\
\end{aligned}
\]

NTT即可

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const int G = 3,P = 998244353;
int fac[maxn],fv[maxn],inv[maxn],bin[maxn],g[maxn];
int L,R[maxn],A[maxn],B[maxn],n,m,N;
inline int qpow(int a,int b){
int ans = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) ans = 1ll * ans * a % P;
return ans;
}
void init(){
fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
bin[0] = 1; bin[1] = 2;
g[0] = 1; g[1] = N + 1;
for (int i = 2; i <= N; i++){
fac[i] = 1ll * fac[i - 1] * i % P;
inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[i] = 1ll * fv[i - 1] * inv[i] % P;
bin[i] = 2ll * bin[i - 1] % P;
g[i] = 1ll * (1ll * qpow(i,N + 1) - 1 + P) % P * inv[i - 1] % P;
}
}
void NTT(int* a,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
int gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k]; y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P; a[j + k + i] = ((x - y) % P + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
int main(){
N = read();
init();
for (int i = 0; i <= N; i++){
A[i] = ((i & 1) ? -1ll : 1ll) * fv[i] % P;
B[i] = 1ll * g[i] * fv[i] % P;
}
m = N + N; L = 0;
for (n = 1; n <= m; n <<= 1) L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(A,1); NTT(B,1);
for (int i = 0; i < n; i++) A[i] = 1ll * A[i] % P * B[i] % P;
NTT(A,-1);
int ans = 0;
for (int i = 0; i <= N; i++)
ans = (ans + 1ll * bin[i] * fac[i] % P * A[i] % P) % P;
printf("%d\n",(ans % P + P) % P);
return 0;
}

BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】的更多相关文章

  1. bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...

  2. BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)

    题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...

  3. 【BZOJ4555】【TJOI2016】【HEOI2016】求和 第二类斯特林数 NTT

    题目大意 求\(f(n)=\sum_{i=0}^n\sum_{j=0}^i2^j\times j!\times S(i,j)\\\) 对\(998244353\)取模 \(n\leq 100000\) ...

  4. 【BZOJ4555】【TJOI2016】【HEOI2016】求和 (第二类斯特林数+NTT卷积)

    Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: $$f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\tim ...

  5. P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)

    传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...

  6. BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】

    题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...

  7. bzoj 5093 图的价值 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...

  8. bzoj5093:图的价值(第二类斯特林数+NTT)

    传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...

  9. BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT

    定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...

随机推荐

  1. python_10_for guess

    age_of_oldboy=56 count=0 for count in range(3): guess_age=int(input('guess age:')) if guess_age==age ...

  2. cuda中当元素个数超过线程个数时的处理案例

    项目打包下载 当向量元素超过线程个数时的情况 向量元素个数为(33 * 1024)/(128 * 128)=2.x倍 /* * Copyright 1993-2010 NVIDIA Corporati ...

  3. Spring @Transactional 浅谈

    一般当我们在一个方法里面操作多个数据对象的可持久化操作时,我们通常这些操作能够成功一起事务提交成功.默认情况下,数据库处于自动提交模式.每一条语句处于一个单独的事务中,在这条语句执行完毕时,如果执行成 ...

  4. SpringBoot日志输出至Logstash

    1.springboot项目pom.xml文件下添加如下配置 2.resources目录下创建logback-spring.xml文件 <?xml version="1.0" ...

  5. atm-interface-shopping

    from db import db_handlerfrom interface import bank def shopping_interface(name, cost, shoppingcart) ...

  6. A1042 Shuffling Machine (20)

    1042 Shuffling Machine (20)(20 分) Shuffling is a procedure used to randomize a deck of playing cards ...

  7. Diycode开源项目 UserActivity分析

    1.效果预览 1.1.实际界面预览 1.2. 这是MainActivity中的代码 这里执行了跳转到自己的用户界面的功能. 1.3.点击头像或者用户名跳转到别人的页面 UserActivity的结构由 ...

  8. Android Studio 快捷键(包含自定义)终极版

      [F] [F] F2 在错误代码之间切换 F3 往前定位(Shift + F3:往后定位 )有问题 F4\Ctrl+鼠标点击\Ctrl+B 转到定义,查看类继承关系 F5 但不调试进入函数内部. ...

  9. HDU 4005 The war 双连通分量 缩点

    题意: 有一个边带权的无向图,敌人可以任意在图中加一条边,然后你可以选择删除任意一条边使得图不连通,费用为被删除的边的权值. 求敌人在最优的情况下,使图不连通的最小费用. 分析: 首先求出边双连通分量 ...

  10. 第2章c++简单程序设计

    第2章c++简单程序设计 知识梳理 以下是我遗忘以及认为重要的知识整理: 1.标识符的构成规则: 以大写字母.小写字母或下划线 _ 开始 由大写字母.小写字母.下划线 _ 或数字(0~9)组成 大写字 ...