For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 and p2 such that

n = p1 + p2

This conjecture has not been proved nor refused yet. No one is sure whether this conjecture actually holds. However, one can find such a pair of prime numbers, if any, for a given even number. The problem here is to write a program that reports the number of all the pairs of prime numbers satisfying the condition in the conjecture for a given even number.

A sequence of even numbers is given as input. There can be many such numbers. Corresponding to each number, the program should output the number of pairs mentioned above. Notice that we are interested in the number of essentially different pairs and therefore you should not count (p1, p2) and (p2, p1) separately as two different pairs.

Input

An integer is given in each input line. You may assume that each integer is even, and is greater than or equal to 4 and less than 215. The end of the input is indicated by a number 0.

Output

Each output line should contain an integer number. No other characters should appear in the output.

Sample Input

6
10
12
0

Sample Output

1
2
1

给个n>=6,问把n分成两个奇质数之和有几种方案

直接暴力枚举其中一个是啥,只要不重复统计就行

 #include<cstdio>
#include<iostream>
#include<cstring>
#define LL long long
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
LL n;
bool mk[];
int p[],len;
inline void getp()
{
for (int i=;i<=;i++)
{
if (!mk[i])
{
p[++len]=i;
for (int j=*i;j<=;j+=i)mk[j]=;
}
}
}
int main()
{
getp();
while (~scanf("%lld",&n)&&n)
{
int ans=;
for (int i=;p[i]*<=n;i++)
if (!mk[n-p[i]])ans++;
printf("%d\n",ans);
}
}

poj 2909

[暑假集训--数论]poj2909 Goldbach's Conjecture的更多相关文章

  1. [暑假集训--数论]poj2262 Goldbach's Conjecture

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in whic ...

  2. [暑假集训--数论]hdu2136 Largest prime factor

    Everybody knows any number can be combined by the prime number. Now, your task is telling me what po ...

  3. [暑假集训--数论]hdu1019 Least Common Multiple

    The least common multiple (LCM) of a set of positive integers is the smallest positive integer which ...

  4. [暑假集训--数论]poj2115 C Looooops

    A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != ...

  5. [暑假集训--数论]poj1365 Prime Land

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...

  6. [暑假集训--数论]poj2034 Anti-prime Sequences

    Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement ...

  7. [暑假集训--数论]poj1595 Prime Cuts

    A prime number is a counting number (1, 2, 3, ...) that is evenly divisible only by 1 and itself. In ...

  8. [暑假集训--数论]poj3518 Prime Gap

    The sequence of n − 1 consecutive composite numbers (positive integers that are not prime and not eq ...

  9. [暑假集训--数论]poj1730 Perfect Pth Powers

    We say that x is a perfect square if, for some integer b, x = b 2. Similarly, x is a perfect cube if ...

随机推荐

  1. SAP 各模块常用的BAPI

    MM模块 1. BAPI_MATERIAL_SAVEDATA 创建物料主数据 注意参数EXTENSIONIN的使用,可以创建自定义字段 例如:WA_BAPI_TE_MARA-MATERIAL = IT ...

  2. Mysql之1451 - Cannot delete or update a parent row: a foreign key constraint fails...解决办法记录

    今天使用delete语句删除一张表中的一条信息时,提示了这么一个错误:1451 - Cannot delete or update a parent row: a foreign key constr ...

  3. 为什么选择Redis

    1)Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储.    2)Redis支持master-slave(主-从)模式应用    3)Redi ...

  4. Python中列表的深浅拷贝

    copy_lst = [ ('py对象三要素',), ('== 比较运算符',), ('is 身份运算符',), ('小数据池',), ('列表的浅拷贝',), ('列表的深拷贝',), ] py对象 ...

  5. django_数据库操作—增、删、改、查

    增加 增加数据有两种方法 1> sava >>> from datetime import date >>> book = BookInfo( btitle= ...

  6. Asp.net Mvc Action重定向总结

    摘自博客园 程晓晖 [HttpPost]        public ActionResult StudentList( string StudName, string studName, DateT ...

  7. CentOS下的Redis启动脚本

    这是一个Shell脚本,用于管理Redis进程(启动,停止,重启),如果你在使用Redis,这个脚本可供参考. #!/bin/sh # # redis - this script starts and ...

  8. Android Shader渲染器:BitmapShader图片渲染

    public class BitmapShader extends Shader BitmapShader,  Shader家族的 专门处理图片渲染的 构造方法: public BitmapShade ...

  9. SXCPC2018 nucoj2005 大闹上兰帝国

    超 dark van♂全背包 ref1 ref2 #include <iostream> #include <cstring> #include <cstdio> ...

  10. Hyper-V 虚拟机快照:常见问题

    发布时间: 2009年3月 更新时间: 2010年12月 应用到: Windows Server 2008 什么是虚拟机快照? 虚拟机快照可捕获正在运行的虚拟机的状态.数据和硬件配置. 快照有哪些用途 ...