标签: caffe预测
2017-03-08 21:17 273人阅读 评论(0) 收藏 举报
 分类:
caffe之旅(4) 

版权声明:本文为博主原创文章,未经博主允许不得转载。

搭建好caffe环境后,就需要用自己的图片进行分类预测,主要步骤如下,主要参照http://www.cnblogs.com/denny402/p/5083300.html,感谢博主: 
1、数据准备,下载待训练的图片集,共5类400张,测试集100张,目录分别为data\re\train,data\re\val,新建test.txt、val.txt。

2、转换数据为lmdb,复制create_imagenet.sh文件,修改参数为 

3、计算均值文件,复制make_imagenet_mean.sh文件,修改参数为 

4、制作网络模型,caffe中提供了很多成熟的模型,我们先直接拿过来用,主要用bvlc_reference_caffenet下的模型,复制.\models\bvlc_reference_caffenet\目录下的deploy.prototxt、solver.prototxt、train_val.prototxt三个文件,首先打开train_val.prototxt文件,修改mean、train_lmdb、val_lmdb文件路径,然后修改全连接层fc8的输出num,即分类数, 
 
同样打开deploy.prototxt文件,修改num_output为5(5个类别),然后打开solver.prototxt,修改如下,具体参数意义在此不做说明 

5、开始训练模型,新建.sh文件,输入 
set -e 
.D:/caffe/caffe-windows/Build/x64/Release/caffe train \ 
–solver=D:/caffe/caffe-windows/data/re/solver.prototxt $@ 
pause 
cpu情况下需要训练好几个小时。

6、查看训练结果,待训练完成后,会在相应的路径下生成.caffemodel文件,即我们训练的模型,新建.sh文件,输入 
D:\caffe\caffe-windows\Build\x64\Release\caffe.exe test –model=D:\caffe\caffe-windows\data\re\train_val.prototxt –weights=D:\caffe\caffe-windows\data\re\caffenet_train_iter_2000.caffemodel 
pause 
可以查看模型的训练结果,模型准确度比较低,说明网络模型没有设计好,这里只讲流程,网络模型需要进一步的研究 

7、分类预测,模型训练完成后,就可以输入图片进行分类预测,在根目录下新建.sh文件,输入 
Build\x64\Release\classification.exe data\re\deploy.prototxt data\re\caffenet_train_iter_2000.caffemodel data\re\imagenet_mean.binaryproto data\re\test.txt data\re\val\401.jpg 
pause 
主要有6个参数,第一个是Release下生成的classification.exe文件,第二个是预测文件,deploy.prototxt相对于train_val.prototxt少了data层,第三个是生成的网络模型,第四个是均值文件,第五个是类别文件,第六个是待预测分类的图片 
 
识别率不是很高,需要进一步优化网络模型。

caffe训练自己的图片进行分类预测--windows平台的更多相关文章

  1. python+caffe训练自己的图片数据流程

    1. 准备自己的图片数据 选用部分的Caltech数据库作为训练和测试样本.Caltech是加州理工学院的图像数据库,包含Caltech101和Caltech256两个数据集.该数据集是由Fei-Fe ...

  2. 实践详细篇-Windows下使用Caffe训练自己的Caffemodel数据集并进行图像分类

    三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分 ...

  3. 用训练好的caffemodel对单个/批量图片进行分类

    一.单个图片进行分类 这个比较简单,在*.bat文件中输入以下代码: @echo off set BIN_DIR=D:\caffe\caffe-windows\Build\x64\Release se ...

  4. caffe︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization

    一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优 ...

  5. 基于Caffe训练AlexNet模型

    数据集 1.准备数据集 1)下载训练和验证图片 ImageNet官网地址:http://www.image-net.org/signup.php?next=download-images (需用邮箱注 ...

  6. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  7. Caffe训练AlexNet网络,精度不高或者为0的问题结果

    当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码 ...

  8. VS2013配置Caffe卷积神经网络工具(64位Windows 7)——准备依赖库

    VS2013配置Caffe卷积神经网络工具(64位Windows 7)--准备依赖库 2014年4月的时候自己在公司就将Caffe移植到Windows系统了,今年自己换了台电脑,想在家里也随便跑跑,本 ...

  9. Windows平台网站图片服务器架构的演进[转]

    构建在Windows平台之上的网站,往往会被业内众多架构师认为很“保守”.很大部分原因,是由于微软技术体系的封闭和部分技术人员的短视造成 的.由于长期缺乏开源支持,所以只能“闭门造车”,这样很容易形成 ...

随机推荐

  1. Rust 内存管理

    Rust 内存管理 Rust 与其他编程语言相比,最大的亮点就是引入了一套在编译期间,通过静态分析的方式,确定所有对象的作用域与生命周期,从而可以精确的在某个对象不再被使用时,将其销毁,并且不引入任何 ...

  2. 刷题总结——Tree2cycle(hdu4714 树形dp)

    题目: A tree with N nodes and N-1 edges is given. To connect or disconnect one edge, we need 1 unit of ...

  3. poj1324 Holedox Moving

    Holedox Moving Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 16980   Accepted: 4039 D ...

  4. poj 2079 Triangle

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 9835   Accepted: 2951 Descript ...

  5. git超详细教程【转】

    转自:http://blog.csdn.net/liuwengai/article/details/52072344 GitHub操作总结 : 总结看不明白就看下面的详细讲解.   GitHub操作流 ...

  6. hdu 5455(字符串处理)

    Fang Fang Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total S ...

  7. 1076. Wifi密码 (15)【模拟】

    1076. Wifi密码 (15) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 下面是微博上流传的一张照片:“ ...

  8. SQLite的sqlite_master表

    SQLite的sqlite_master表   sqlite_master表是SQLite的系统表.该表记录该数据库中保存的表.索引.视图.和触发器信息.每一行记录一个项目.在创建一个SQLIte数据 ...

  9. numpy常用函数学习

    目录numpy常用函数学习点乘法线型预测线性拟合裁剪.压缩和累乘相关性多项式拟合提取符号数组杂项点乘法该方法为数学方法,但是在numpy使用的时候略坑.numpy的点乘为a.dot(b)或numpy. ...

  10. SQL Server 2008 镜像的监控 - Joe.TJ -

    http://www.cnblogs.com/Joe-T/archive/2012/09/06/2673237.html