标签: caffe预测
2017-03-08 21:17 273人阅读 评论(0) 收藏 举报
 分类:
caffe之旅(4) 

版权声明:本文为博主原创文章,未经博主允许不得转载。

搭建好caffe环境后,就需要用自己的图片进行分类预测,主要步骤如下,主要参照http://www.cnblogs.com/denny402/p/5083300.html,感谢博主: 
1、数据准备,下载待训练的图片集,共5类400张,测试集100张,目录分别为data\re\train,data\re\val,新建test.txt、val.txt。

2、转换数据为lmdb,复制create_imagenet.sh文件,修改参数为 

3、计算均值文件,复制make_imagenet_mean.sh文件,修改参数为 

4、制作网络模型,caffe中提供了很多成熟的模型,我们先直接拿过来用,主要用bvlc_reference_caffenet下的模型,复制.\models\bvlc_reference_caffenet\目录下的deploy.prototxt、solver.prototxt、train_val.prototxt三个文件,首先打开train_val.prototxt文件,修改mean、train_lmdb、val_lmdb文件路径,然后修改全连接层fc8的输出num,即分类数, 
 
同样打开deploy.prototxt文件,修改num_output为5(5个类别),然后打开solver.prototxt,修改如下,具体参数意义在此不做说明 

5、开始训练模型,新建.sh文件,输入 
set -e 
.D:/caffe/caffe-windows/Build/x64/Release/caffe train \ 
–solver=D:/caffe/caffe-windows/data/re/solver.prototxt $@ 
pause 
cpu情况下需要训练好几个小时。

6、查看训练结果,待训练完成后,会在相应的路径下生成.caffemodel文件,即我们训练的模型,新建.sh文件,输入 
D:\caffe\caffe-windows\Build\x64\Release\caffe.exe test –model=D:\caffe\caffe-windows\data\re\train_val.prototxt –weights=D:\caffe\caffe-windows\data\re\caffenet_train_iter_2000.caffemodel 
pause 
可以查看模型的训练结果,模型准确度比较低,说明网络模型没有设计好,这里只讲流程,网络模型需要进一步的研究 

7、分类预测,模型训练完成后,就可以输入图片进行分类预测,在根目录下新建.sh文件,输入 
Build\x64\Release\classification.exe data\re\deploy.prototxt data\re\caffenet_train_iter_2000.caffemodel data\re\imagenet_mean.binaryproto data\re\test.txt data\re\val\401.jpg 
pause 
主要有6个参数,第一个是Release下生成的classification.exe文件,第二个是预测文件,deploy.prototxt相对于train_val.prototxt少了data层,第三个是生成的网络模型,第四个是均值文件,第五个是类别文件,第六个是待预测分类的图片 
 
识别率不是很高,需要进一步优化网络模型。

caffe训练自己的图片进行分类预测--windows平台的更多相关文章

  1. python+caffe训练自己的图片数据流程

    1. 准备自己的图片数据 选用部分的Caltech数据库作为训练和测试样本.Caltech是加州理工学院的图像数据库,包含Caltech101和Caltech256两个数据集.该数据集是由Fei-Fe ...

  2. 实践详细篇-Windows下使用Caffe训练自己的Caffemodel数据集并进行图像分类

    三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分 ...

  3. 用训练好的caffemodel对单个/批量图片进行分类

    一.单个图片进行分类 这个比较简单,在*.bat文件中输入以下代码: @echo off set BIN_DIR=D:\caffe\caffe-windows\Build\x64\Release se ...

  4. caffe︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization

    一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优 ...

  5. 基于Caffe训练AlexNet模型

    数据集 1.准备数据集 1)下载训练和验证图片 ImageNet官网地址:http://www.image-net.org/signup.php?next=download-images (需用邮箱注 ...

  6. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  7. Caffe训练AlexNet网络,精度不高或者为0的问题结果

    当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码 ...

  8. VS2013配置Caffe卷积神经网络工具(64位Windows 7)——准备依赖库

    VS2013配置Caffe卷积神经网络工具(64位Windows 7)--准备依赖库 2014年4月的时候自己在公司就将Caffe移植到Windows系统了,今年自己换了台电脑,想在家里也随便跑跑,本 ...

  9. Windows平台网站图片服务器架构的演进[转]

    构建在Windows平台之上的网站,往往会被业内众多架构师认为很“保守”.很大部分原因,是由于微软技术体系的封闭和部分技术人员的短视造成 的.由于长期缺乏开源支持,所以只能“闭门造车”,这样很容易形成 ...

随机推荐

  1. 二进制<4>

    位运算简介及实用技巧(四):实战篇 下面分享的是我自己写的三个代码,里面有些题目也是我自己出的.这些代码都是在我的Pascal时代写的,恕不提供C语言了.代码写得并不好,我只是想告诉大家位运算在实战中 ...

  2. [AtCoderContest075F]Mirrored

    [AtCoderContest075F]Mirrored 试题描述 For a positive integer \(n\), we denote the integer obtained by re ...

  3. stein法求gcd 学习笔记

    原理显然 由于当x,y都为奇数时进行辗转相见 每次减完必有偶数 而偶数最多除log次 那么也最多减log次 复杂度有保证 注:代码未验证 int gcd(int x,int y){ int res=1 ...

  4. APUE 学习笔记(九) 高级I/O

    1. 非阻塞I/O 低速系统调用时可能会使进程永远阻塞的一类系统调用,包括以下调用: (1)某些文件类型你(网络socket套接字.终端设备.管道)暂无可使用数据,则读操作可能会使调用者永远阻塞 (2 ...

  5. SPOJ CIRU The area of the union of circles

    You are given N circles and expected to calculate the area of the union of the circles ! Input The f ...

  6. “百度杯”CTF比赛 十月场_Login

    题目在i春秋ctf大本营 打开页面是两个登录框,首先判断是不是注入 尝试了各种语句后,发现登录界面似乎并不存在注入 查看网页源代码,给出了一个账号 用帐密登陆后,跳转到到member.php网页,网页 ...

  7. 反汇编->C++虚函数深度分析

    先来查看一简单例子 #include<iostream> using namespace std; class Base{ public: virtual void f() { cout ...

  8. 算法 & 数据结构——任意多边形填充

    需求 . 在计算机中,选区是一个很常见的功能,例如windows按住鼠标左键拖动划出矩形选区,Photshop通过钢笔工具任意形状选区.选区本身不过是通过线段闭合的一个几何形状,但是如何填充这个选区, ...

  9. 算法 & 数据结构——收纳箱算法???

    . 最近工作上有一个需求,需要将图片打包成图集,以便于让资源更紧凑,利用率更高,提升性能,游戏行内的同志应该很熟练这个操作.通常我们需要用一个app来完成这项工作,最出名的莫过于Texture Pac ...

  10. Eventbus 使用方法和原理分析

    对于 Eventbus ,相信很多 Android 小伙伴都用到过. 1.创建事件实体类 所谓的事件实体类,就是传递的事件,一个组件向另一个组件发送的信息可以储存在一个类中,该类就是一个事件,会被 E ...