483. Smallest Good Base
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1.
Now given a string representing n, you should return the smallest good base of n in string format.
Example 1:
- Input: "13"
- Output: "3"
- Explanation: 13 base 3 is 111.
Example 2:
- Input: "4681"
- Output: "8"
- Explanation: 4681 base 8 is 11111.
Example 3:
- Input: "1000000000000000000"
- Output: "999999999999999999"
- Explanation: 1000000000000000000 base 999999999999999999 is 11.
Note:
- The range of n is [3, 10^18].
- The string representing n is always valid and will not have leading zeros.
- class Solution {
- public:
- string smallestGoodBase(string n) {
- unsigned long long tn = (unsigned long long)stoll(n);
- unsigned long long x = 1;
- for (int i = 62; i >= 1; --i) {
- if ((x<<i) < tn) {
- unsigned long long temp = solve(tn, i);
- if (temp != 0) return to_string(temp);
- }
- }
- return to_string(tn-1);
- }
- private:
- unsigned long long solve(unsigned long long num, int d) {
- double tn = (double) num;
- unsigned long long r = (unsigned long long)(pow(tn, 1.0/d)+1);
- unsigned long long l = 1;
- while (l <= r) {
- unsigned long long sum = 1;
- unsigned long long cur = 1;
- unsigned long long m = l + (r - l) / 2;
- for (int i = 1; i <= d; ++i) {
- cur *= m;
- sum += cur;
- }
- if (sum == num) return m;
- if (sum < num) l = m + 1;
- else r = m - 1;
- }
- return 0;
- }
- };
The input can be stored in a long long int, here I use unsigned long long int for a larger range. We need to find k, for 1+k^1+k^2+k^3+...+k^d=n. The smallest possible base is k=2, with has the longest possible representation, i.e., largest d. So, to find the smallest base means to find the longest possible representation "11111....1" based on k. As n<=10^18, so n<(1<<62). We iterate the length of the representation from 62 to 2 (2 can always be valid, with base=n-1), and check whether a given length can be valid.
For a given length d, we use binary search to check whether there is a base k which satisfies 1+k^1+k^2+...k^d=n. The left limit is 1, and the right limit is pow(n,1/d)+1, i.e., the d th square root of n. The code is shown below.
come from: https://leetcode.com/problems/smallest-good-base/discuss/96590/3ms-AC-C%2B%2B-long-long-int-%2B-binary-search
483. Smallest Good Base的更多相关文章
- [LeetCode] 483. Smallest Good Base 最小的好基数
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...
- Leetcode 483. Smallest Good Base
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...
- [LeetCode] Smallest Good Base 最小的好基数
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...
- [Swift]LeetCode483. 最小好进制 | Smallest Good Base
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...
- Binary Search-483. Smallest Good Base
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...
- LeetCode All in One题解汇总(持续更新中...)
突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...
- leetcode 几道题目
是周六晚上的几道题,晚上11点半,睡的早,起不来! 494. Target Sum 分析:看完这题,看到数据范围,长度20,枚举就是1<<20 = 1e6, 然后单次20,总共就是2e8, ...
- All LeetCode Questions List 题目汇总
All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...
- Leetcode problems classified by company 题目按公司分类(Last updated: October 2, 2017)
All LeetCode Questions List 题目汇总 Sorted by frequency of problems that appear in real interviews. Las ...
随机推荐
- MVC5中使用jQuery Post 二维数组和一维数组到Action
很久没有写了,最近在做一个MVC项目,这是我做的第一个MVC项目.之前可以说多MVC一点都不了解,今天把昨天遇到的一个问题记录下来.MVC大神就请飘过吧,跟我遇到同样问题的可以进来看看.遇到的第一个问 ...
- 【BZOJ1467/2480】Pku3243 clever Y/Spoj3105 Mod EXBSGS
[BZOJ1467/2480]Pku3243 clever Y/Spoj3105 Mod Description 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. Input ...
- 开源服务器监控工具 — JavaMelody 类 jvm 内在性能(转)
开源服务器监控工具 — JavaMelody JavaMelody它能够监测Java或Java EE应用程序服务器,并以图表的方式显示:Java内存和Java CPU使用情况,用户Sessio ...
- spring mvc 设置设置默认首页的方式
背景: 项目使用springmvc管理请求,有一个小的需求,输入域名的时候自动进入某个页面(或者说自动发起某个请求). 过程: 1,首先想到 在web.xml中配置welcome-file-list的 ...
- Hibernate的检索策略和优化
一.检索策略概述 当我们实现了一对多或者多对多的映射后,在检索数据库时需要注意两个问题: 1.使用尽可能小的内存:当 Hibernate 从数据库中加载一个客户信息时, 如果同时加载所有关联这个客户的 ...
- Kafka 配置参数汇总及相关说明
Kafka为broker,producer和consumer提供了很多的配置参数. 了解并理解这些配置参数对于我们使用kafka是非常重要的.本文列出了一些重要的配置参数. 官方的文档 Configu ...
- eclipse中怎么删除重复的console
eclipse中不同的应用会开启不同的console,所以并不是重复. 如图: Terminate标志/操作按钮,可以停止当前的执行,以及标志此Console是Terminated状态: Remove ...
- Windows server 2008 R2 如何启动任务计划程序
使用windows server 2008 R2 的任务计划程序需要启动服务 Task Scheduler 服务, windows server 2008 R2 默认状态下Task Schedule ...
- 3.改变 HTML 内容
①x=document.getElementById("demo") //查找元素 ②x.innerHTML="Hello JavaScript"; //改变内 ...
- appium():PageObject&PageFactory
Appium Java client has facilities which components to Page Object design pattern and Selenium PageFa ...