For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1.

Now given a string representing n, you should return the smallest good base of n in string format.

Example 1:

  1. Input: "13"
  2. Output: "3"
  3. Explanation: 13 base 3 is 111.

Example 2:

  1. Input: "4681"
  2. Output: "8"
  3. Explanation: 4681 base 8 is 11111.

Example 3:

  1. Input: "1000000000000000000"
  2. Output: "999999999999999999"
  3. Explanation: 1000000000000000000 base 999999999999999999 is 11.

Note:

  1. The range of n is [3, 10^18].
  2. The string representing n is always valid and will not have leading zeros.
 
Approach #1:
  1. class Solution {
  2. public:
  3. string smallestGoodBase(string n) {
  4. unsigned long long tn = (unsigned long long)stoll(n);
  5. unsigned long long x = 1;
  6. for (int i = 62; i >= 1; --i) {
  7. if ((x<<i) < tn) {
  8. unsigned long long temp = solve(tn, i);
  9. if (temp != 0) return to_string(temp);
  10. }
  11. }
  12. return to_string(tn-1);
  13. }
  14. private:
  15. unsigned long long solve(unsigned long long num, int d) {
  16. double tn = (double) num;
  17. unsigned long long r = (unsigned long long)(pow(tn, 1.0/d)+1);
  18. unsigned long long l = 1;
  19. while (l <= r) {
  20. unsigned long long sum = 1;
  21. unsigned long long cur = 1;
  22. unsigned long long m = l + (r - l) / 2;
  23. for (int i = 1; i <= d; ++i) {
  24. cur *= m;
  25. sum += cur;
  26. }
  27. if (sum == num) return m;
  28. if (sum < num) l = m + 1;
  29. else r = m - 1;
  30. }
  31. return 0;
  32. }
  33. };
Runtime: 4 ms, faster than 49.59% of C++ online submissions for Smallest Good Base.

 Analysis:

The input can be stored in a long long int, here I use unsigned long long int for a larger range. We need to find k, for 1+k^1+k^2+k^3+...+k^d=n. The smallest possible base is k=2, with has the longest possible representation, i.e., largest d. So, to find the smallest base means to find the longest possible representation "11111....1" based on k. As n<=10^18, so n<(1<<62). We iterate the length of the representation from 62 to 2 (2 can always be valid, with base=n-1), and check whether a given length can be valid.

For a given length d, we use binary search to check whether there is a base k which satisfies 1+k^1+k^2+...k^d=n. The left limit is 1, and the right limit is pow(n,1/d)+1, i.e., the d th square root of n. The code is shown below.

come from: https://leetcode.com/problems/smallest-good-base/discuss/96590/3ms-AC-C%2B%2B-long-long-int-%2B-binary-search

483. Smallest Good Base的更多相关文章

  1. [LeetCode] 483. Smallest Good Base 最小的好基数

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  2. Leetcode 483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  3. [LeetCode] Smallest Good Base 最小的好基数

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  4. [Swift]LeetCode483. 最小好进制 | Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  5. Binary Search-483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  6. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  7. leetcode 几道题目

    是周六晚上的几道题,晚上11点半,睡的早,起不来! 494. Target Sum 分析:看完这题,看到数据范围,长度20,枚举就是1<<20 = 1e6, 然后单次20,总共就是2e8, ...

  8. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

  9. Leetcode problems classified by company 题目按公司分类(Last updated: October 2, 2017)

    All LeetCode Questions List 题目汇总 Sorted by frequency of problems that appear in real interviews. Las ...

随机推荐

  1. MVC5中使用jQuery Post 二维数组和一维数组到Action

    很久没有写了,最近在做一个MVC项目,这是我做的第一个MVC项目.之前可以说多MVC一点都不了解,今天把昨天遇到的一个问题记录下来.MVC大神就请飘过吧,跟我遇到同样问题的可以进来看看.遇到的第一个问 ...

  2. 【BZOJ1467/2480】Pku3243 clever Y/Spoj3105 Mod EXBSGS

    [BZOJ1467/2480]Pku3243 clever Y/Spoj3105 Mod Description 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. Input      ...

  3. 开源服务器监控工具 — JavaMelody 类 jvm 内在性能(转)

    开源服务器监控工具 — JavaMelody     JavaMelody它能够监测Java或Java EE应用程序服务器,并以图表的方式显示:Java内存和Java CPU使用情况,用户Sessio ...

  4. spring mvc 设置设置默认首页的方式

    背景: 项目使用springmvc管理请求,有一个小的需求,输入域名的时候自动进入某个页面(或者说自动发起某个请求). 过程: 1,首先想到 在web.xml中配置welcome-file-list的 ...

  5. Hibernate的检索策略和优化

    一.检索策略概述 当我们实现了一对多或者多对多的映射后,在检索数据库时需要注意两个问题: 1.使用尽可能小的内存:当 Hibernate 从数据库中加载一个客户信息时, 如果同时加载所有关联这个客户的 ...

  6. Kafka 配置参数汇总及相关说明

    Kafka为broker,producer和consumer提供了很多的配置参数. 了解并理解这些配置参数对于我们使用kafka是非常重要的.本文列出了一些重要的配置参数. 官方的文档 Configu ...

  7. eclipse中怎么删除重复的console

    eclipse中不同的应用会开启不同的console,所以并不是重复. 如图: Terminate标志/操作按钮,可以停止当前的执行,以及标志此Console是Terminated状态: Remove ...

  8. Windows server 2008 R2 如何启动任务计划程序

    使用windows server 2008 R2  的任务计划程序需要启动服务 Task Scheduler 服务, windows server 2008 R2 默认状态下Task Schedule ...

  9. 3.改变 HTML 内容

    ①x=document.getElementById("demo") //查找元素 ②x.innerHTML="Hello JavaScript"; //改变内 ...

  10. appium():PageObject&PageFactory

    Appium Java client has facilities which components to Page Object design pattern and Selenium PageFa ...