fzu1759 Super A^B mod C 扩展欧拉定理降幂
扩展欧拉定理:
\]
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
ll aa, cc;
char bb[1000005];
ll getPhi(ll x){
ll ans=x;
for(ll i=2; i*i<=x; i++)
if(x%i==0){
ans -= ans / i;
while(x%i==0) x /= i;
}
if(x>1) ans -= ans / x;
return ans;
}
ll ksm(ll a, ll b, ll c){
ll re=1;
while(b){
if(b&1) re = (re * a) % c;
a = (a * a) % c;
b >>= 1;
}
return re;
}
int main(){
while(scanf("%lld %s %lld", &aa, bb, &cc)!=EOF){
ll phi=getPhi(cc);
int len=strlen(bb);
ll tmp=0;
for(int i=0; i<len; i++){
tmp = tmp * 10 + bb[i] - '0';
if(tmp>=phi) break;
}
if(tmp>=phi){
tmp = 0;
for(int i=0; i<len; i++)
tmp = (tmp * 10 + bb[i] - '0') % phi;
printf("%lld\n", ksm(aa, tmp+phi, cc));
}
else printf("%lld\n", ksm(aa, tmp, cc));
}
return 0;
}
fzu1759 Super A^B mod C 扩展欧拉定理降幂的更多相关文章
- 牛客练习赛22-E.简单数据结构1(扩展欧拉定理降幂 +树状数组)
链接:E.简单数据结构1 题意: 给一个长为n的序列,m次操作,每次操作: 1.区间加 2.对于区间,查询 ,一直到- 请注意每次的模数不同. 题解:扩展欧拉定理降幂 对一个数p取log(p)次的 ...
- FZU-1759 Super A^B mod C---欧拉降幂&指数循环节
题目链接: https://cn.vjudge.net/problem/FZU-1759 题目大意: 求A^B%C 解题思路: 注意,这里long long需要用%I64读入,不能用%lld #inc ...
- BZOJ3884题解上帝与集合的正确用法--扩展欧拉定理
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3884 分析 扩展欧拉定理裸题 欧拉定理及证明: 如果\((a,m)=1\),则\(a^{ ...
- FZU Super A^B mod C(欧拉函数降幂)
Problem 1759 Super A^B mod C Accept: 878 Submit: 2870 Time Limit: 1000 mSec Memory Limit : 327 ...
- [luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】
题目大意 让你求\(2^{2^{2^{\cdots}}}(mod)P\)的值. 前置知识 知识1:无限次幂怎么解决 让我们先来看一道全国数学竞赛的一道水题: 让你求解:\(x^{x^{x^{\cdot ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- SHOI 2017 相逢是问候(扩展欧拉定理+线段树)
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度 ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- 2018牛客网暑期ACM多校训练营(第四场) A - Ternary String - [欧拉降幂公式][扩展欧拉定理]
题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where ...
随机推荐
- SQLAlchemy的基本使用
一.介绍 SQLAlchemy是一种ORM(Object-Relational Mapping)框架,用来将关系型数据库映射到对象上.该框架建立在DB API之上,将类和对象转化成SQL,然后使用AP ...
- java uuid第一次性能
在java中产生uuid的方式是使用java.util.UUID. UUID.randomUUID().toString(); 我在测试redis性能时,使用uuid产生测试数据,发现多线程测试red ...
- 编写C#程序,自动将bing首页图片设为壁纸
任务目标: 1,获取图片 2,设为壁纸 3,自动化 环境需求: .NET Framework 4.0+, Visual Studio 2017 ==================== 1,获取图片 ...
- 如何用JavaScript实现2+2=5?
我大学毕业找工作时,经常做一些稀奇古怪的面试题.这不,给大家分享一道整蛊的面试题,它其实不能算一道正式的面试题,大家可以用它来捉弄你们那些程序员朋友. 题目:如何用JavaScript实现2+2=5? ...
- Tarjan 详解
Tarjan 算法 一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连 ...
- E - Polycarp and Snakes
E - Polycarp and Snakes 题意:在一个全是点的图上开始画线,每次将一行或一列任意长度染成字母,一笔染一种字母,字母必须从a开始连续到后面某个字母可以覆盖. 问所给图案是否满足 , ...
- 【转】json格式化、高亮库jsonFormater
http://leo108.com/pid-1996.asp JsonFormater 基于jQuery的json格式化.高亮库 核心代码参考天马行空工作室,本人只做了模块化和一些代码优化. demo ...
- java基础—java读取properties文件
一.java读取properties文件总结 在java项目中,操作properties文件是经常要做的,因为很多的配置信息都会写在properties文件中,这里主要是总结使用getResource ...
- MySql下最好用的数据库管理工具是哪个
MySql下最好用的数据库管理工具是哪个? 维基上有个很全的列表: https://en.wikipedia.org/wiki/Comparison_of_database_tools 1. ph ...
- 禅与 Objective-C 编程艺术(Zen and the Art of the Objective-C Craftsmanship)
英文版Zen and the Art of the Objective-C Craftsmanshiphttps://github.com/objc-zen/objc-zen-book 中文版禅与 O ...