转载自:http://www.21ic.com/app/mcu/201811/781135.htm
 
SysTick时钟,俗称“嘀嗒定时器”,它能按设定的时间产生一次中断。控制工程代码中随处可见形如delay_ms()之函数。但是一直不清楚其内在机制。今天花时间研究了一下。首先还是在数据手册上看一下SysTick寄存器的配置,

SysTick时钟,俗称“嘀嗒定时器”,它能按设定的时间产生一次中断。控制工程代码中随处可见形如delay_ms()之函数。但是一直不清楚其内在机制。今天花时间研究了一下。

本文引用地址: http://www.21ic.com/app/mcu/201811/781135.htm

首先还是在数据手册上看一下SysTick寄存器的配置,如图:

寄存器说明



STM32的时钟源
选择外部时钟源时,则Systick时钟为HCLK /8
选择内核时钟源时,则Systick时钟为HCLK

延时编程原理
systick定时器是24位的递减计数器,设定初值并使能它后,它会把每个系统时钟周期计数器减1,
计数到0 时,将从RELOAD 寄存器中自动重装载定时器初值。只要不把它在SysTick控制及状态寄存器中的使能位清除,就永不停息.

延时编程步骤
1.计算出产生1us 需要多少个时钟周期 fac_us
2.计算出RELOAD寄存器的值
也就是产生相应延时所需要的时钟周期数
RELOAD=fac_us * nus
3.开启计数
4.循环检测计数到0的标志位
5.清空计数器,关闭定时器

SysTick异常配置步骤
1对CTRL/LOAD/VAL三个寄存器进行配置
2初始化SysTick使用的时钟
3清除系统当前值,装入重装值
4使能SysTick,使SysTick能响应中断

======================
库函数版
使用ST的函数库使用systick的方法,严格按照以下顺序:

1、调用SysTick_CounterCmd() – 使能SysTick计数器
2、调用SysTick_ITConfig () – 使能SysTick中断
3、调用SysTick_CLKSourceConfig() – 设置SysTick时钟源。
4、调用SysTick_SetReload() – 设置SysTick重装载值。
5、调用SysTick_ITConfig () – 使能SysTick中断
6、调用SysTick_CounterCmd() – 开启SysTick计数器

Systick中断服务函数
void SysTick_Handler(void);

寄存器版
使用外部8M时钟,锁相环里出来的频率是72M,AHB预分频后是72M,
systick固定HCLK时钟的1/8,即9M,那么延时1us是9个时钟

voiddelay_init(u8SYSCLK)//系统时钟是72MHz,SYSCLK=72{SysTick->CTRL&=0xfffffffb;//bit2清0,也就是配置选择外部时钟fac_us=SYSCLK/8;//硬件8分频,fac_us得出的值是要给下面的时钟函数用的fac_ms=(u16)fac_us*1000;}voiddelay_us(u32nus)//nus假如为10us{u32temp;SysTick->LOAD=nus*fac_us;//延时10us的话就是10*9=90,装到load寄存器中SysTick->VAL=0x00;//计数器清0,因为currrent字段被手动清零时,load将自动重装到VAL中SysTick->CTRL=0x01;//配置使异常生效,也就是计数器倒数到0时将发出异常通知do{temp=SysTick->CTRL;//时间到了之后,该位将被硬件置1,但被查询后自动清0}while(temp&0x01&&!(tmep&(1<<16)));//查询SysTick->CTRL=0x00;//关闭计数器SysTick->VAL=0x00;//清空val}12345678910111213141516171819202122

最后一个while循环,判断如果Systick还在Enable的状态,并且计数器还没数到0,
就不停的循环把当前的SysTick->CTRL寄存器值写入变量temp,继续下一次判断。
当Systick被Disable或者计数器数到0了,就停止循环。

=====终=====

什么是SYSTICK:

这是一个24位的系统节拍定时器system tick timer,SysTick,具有自动重载和溢出中断功能,所有基于Cortex_M3处理器的微控制器都可以由这个定时器获得一定的时间间隔。
作用:
在单任务引用程序中,因为其架构就决定了它执行任务的串行性,这就引出一个问题:当某个任务出现问题时,就会牵连到后续的任务,进而导致整个系统崩溃。要解决这个问题,可以使用实时操作系统(RTOS).
因为RTOS以并行的架构处理任务,单一任务的崩溃并不会牵连到整个系统。这样用户出于可靠性的考虑可能就会基于RTOS来设计自己的应用程序。这样SYSTICK存在的意义就是提供必要的时钟节拍,为RTOS的任务调度提供一个有节奏的“心跳”。
微控制器的定时器资源一般比较丰富,比如STM32存在8个定时器,为啥还要再提供一个SYSTICK?原因就是所有基于ARM Cortex_M3内核的控制器都带有SysTick定时器,这样就方便了程序在不同的器件之间的移植。而使用RTOS的第一项工作往往就是将其移植到开发人员的硬件平台上,由于SYSTICK的存在无疑降低了移植的难度。
  SysTick定时器除了能服务于操作系统之外,还能用于其它目的:如作为一个闹铃,用于测量时间等。
要注意的是,当处理器在调试期间被喊停(halt)时,则SysTick定时器亦将暂停运作。
时钟的选择:
用户可以在位于Cortex_M3处理器系统控制单元中的系统节拍定时器控制和状态寄存器(SysTick control and status register ,SCSR)选择systick 时钟源。如将SCSR中的CLKSOURCE位置位,SysTick会在CPU频率下运行;而将CLKSOUCE位清除则SysTick会以CPU主频的1/8频率运行。
3.5版本的库函数与以往的有所区别
不存在stm32f10x_systick.c文件,故原来的一些函数也不存在,比如SysTick_SetReload(u32 reload);SysTick_ITConfig(FunctionalState NewState);等
在3.5版本的库函数中与systick相关的函数只有两个
第一个,SysTick_Config(uint32_t ticks),在core_cm3.h头文件中进行定义的。
第二个,void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource),在misc.c文件中定义的。
SysTick_Config(uint32_t ticks),在core_cm3.h
主要的作用:
1、初始化systick
2、打开systick
3、打开systick的中断并设置优先级
4、返回一个0代表成功或1代表失败
注意:
Uint32_t ticks  即为重装值,
这个函数默认使用的时钟源是AHB,即不分频。
要想分频,调用void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource),
但是要注意函数调用的次序,先SysTick_Config(uint32_t ticks),
后SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)
函数说明:
/**
* @brief  Initialize and start the SysTick counter and its interrupt.
*
* @param   ticks   number of ticks between two interrupts
* @return  1 = failed, 0 = successful
*
* Initialise the system tick timer and its interrupt and start the
* system tick timer / counter in free running mode to generate
* periodical interrupts.
*/
static __INLINE uint32_t SysTick_Config(uint32_t ticks)
{
  if (ticks > SysTick_LOAD_RELOAD_Msk)  return (1);            
  /* Reload value impossible */重装载值必须小于0XFF FFFF,为什么,这是一个24位的递减计数器。
  SysTick->LOAD  = (ticks & SysTick_LOAD_RELOAD_Msk) - 1;
     /* set reload register */设置重装载值,SysTick_LOAD_RELOAD_Msk定义见后面
  NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1);
/* set Priority for Cortex-M0 System Interrupts */
  SysTick->VAL   = 0;
  /* Load the SysTick Counter Value */
  SysTick->CTRL  = SysTick_CTRL_CLKSOURCE_Msk |
                   SysTick_CTRL_TICKINT_Msk   |
                   SysTick_CTRL_ENABLE_Msk;                  
/* Enable SysTick IRQ and SysTick Timer */
  return (0);
  /* Function successful */
}
#endif
与systick相关的寄存器定义
/** @addtogroup CMSIS_CM3_SysTick CMSIS CM3 SysTick
  memory mapped structure for SysTick
  @{
*/
typedef struct
{
  __IO uint32_t CTRL; /*!< Offset: 0x00  SysTick Control and Status Register */
  __IO uint32_t LOAD; /*!< Offset: 0x04  SysTick Reload Value Register       */
  __IO uint32_t VAL; /*!< Offset: 0x08  SysTick Current Value Register      */
  __I  uint32_t CALIB; /*!< Offset: 0x0C  SysTick Calibration Register        */
} SysTick_Type;
与systick寄存器相关的寄存器及位的定义
/* SysTick Control / Status Register Definitions */控制/状态寄存器

#define  SysTick_CTRL_COUNTFLAG_Pos  16      /*!< SysTick CTRL: COUNTFLAG Position */

#define SysTick_CTRL_COUNTFLAG_Msk         (1ul << SysTick_CTRL_COUNTFLAG_Pos)         
/*!< SysTick CTRL: COUNTFLAG Mask */ 溢出标志位
#define SysTick_CTRL_CLKSOURCE_Pos   2       /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk         (1ul << SysTick_CTRL_CLKSOURCE_Pos)  
/*!< SysTick CTRL: CLKSOURCE Mask */时钟源选择位,0=外部时钟;1=内核时钟
#define SysTick_CTRL_TICKINT_Pos      1        /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk           (1ul << SysTick_CTRL_TICKINT_Pos)         
/*!< SysTick CTRL: TICKINT Mask */异常请求位
#define SysTick_CTRL_ENABLE_Pos             0       /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk            (1ul << SysTick_CTRL_ENABLE_Pos)               
/*!< SysTick CTRL: ENABLE Mask */使能位
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos             0    /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk            (0xFFFFFFul << SysTick_LOAD_RELOAD_Pos)        
/*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos             0       /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk            (0xFFFFFFul << SysTick_VAL_CURRENT_Pos)        
/*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos            31      /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk            (1ul << SysTick_CALIB_NOREF_Pos)              
/*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos             30       /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk             (1ul << SysTick_CALIB_SKEW_Pos)               
/*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos             0       /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk            (0xFFFFFFul << SysTick_VAL_CURRENT_Pos)        /*!< SysTick CALIB: TENMS Mask */
/*@}*/ /* end of group CMSIS_CM3_SysTick */
与systick相关的寄存器的说明

void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)
作用:
选择systick的时钟源,AHB时钟或AHB的8分频
默认使用的是AHB时钟,即72MHz
函数说明:
/**
  * @brief  Configures the SysTick clock source.
  * @param  SysTick_CLKSource: specifies the SysTick clock source.
  *   This parameter can be one of the following values:
  *     @arg SysTick_CLKSource_HCLK_Div8: AHB clock divided by 8 selected as SysTick clock source.
  *     @arg SysTick_CLKSource_HCLK: AHB clock selected as SysTick clock source.
  * @retval None
  */
void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)
{
  /* Check the parameters */
  assert_param(IS_SYSTICK_CLK_SOURCE(SysTick_CLKSource));
  if (SysTick_CLKSource == SysTick_CLKSource_HCLK)
  {
    SysTick->CTRL |= SysTick_CLKSource_HCLK;
  }
  else
  {
    SysTick->CTRL &= SysTick_CLKSource_HCLK_Div8;
  }
}
Systick时钟源的定义:
/** @defgroup SysTick_clock_source
  * @{
  */
#define SysTick_CLKSource_HCLK_Div8    ((uint32_t)0xFFFFFFFB)//将控制状态寄存器的第二位置0,即用外部时钟源
#define SysTick_CLKSource_HCLK         ((uint32_t)0x00000004)//将控制状态寄存器的第二位置1,即用内核时钟
#define IS_SYSTICK_CLK_SOURCE(SOURCE) (((SOURCE) == SysTick_CLKSource_HCLK) || \
                                       ((SOURCE) == SysTick_CLKSource_HCLK_Div8))
Systick定时时间的设定:
重装载值=systick 时钟频率(Hz)X想要的定时时间(S)
如:时钟频率为:AHB的8分频;AHB=72MHz那么systick的时钟频率为72/8MHz=9MHz;要定时1秒,则
重装载值=9000000X1=9000000;
定时10毫秒
重状态值=9000000X0.01=90000
Systick的中断处理函数,
在startup_stm32f10x_hd.s启动文件中有定义。
DCD     SysTick_Handler            ; SysTick Handler
根据需要直接编写中断处理函数即可:
Void SysTick_Handler (void)
{ ;}
注意:
如果在工程中,加入了stm32f10x_it.c,而又在主函数中编写中断函数,则会报错。
因为在stm32f10x_it.c文件中,也有这个中断函数的声明,只是内容是空的。
/**
  * @brief  This function handles SysTick Handler.
  * @param  None
  * @retval None
  */
void SysTick_Handler(void)
{
}
中断优先级的修改
在调用SysTick_Config(uint32_t ticks)之后,调用 void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)。这个函数在core_cm3.h头文件中。
具体内容如下:
/**
* @brief  Set the priority for an interrupt
*
* @param  IRQn      The number of the interrupt for set priority
* @param  priority  The priority to set
*
* Set the priority for the specified interrupt. The interrupt
* number can be positive to specify an external (device specific)
* interrupt, or negative to specify an internal (core) interrupt.
*
* Note: The priority cannot be set for every core interrupt.
*/
static __INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
  if(IRQn < 0) {
    SCB->SHP[((uint32_t)(IRQn) & 0xF)-4] = ((priority << (8 - __NVIC_PRIO_BITS)) & 0xff); } /* set Priority for Cortex-M3 System Interrupts */
  else {
    NVIC->IP[(uint32_t)(IRQn)] = ((priority << (8 - __NVIC_PRIO_BITS)) & 0xff);    }        /* set Priority for device specific Interrupts  */
}
下面以一个实例来说明:
利用systick来实现以1秒的时间间隔,闪亮一个LED指示灯,指示灯接在GPIOA.8,低电平点亮。
#include "stm32f10x.h"
//函数声明
void GPIO_Configuration(void);//设置GPIOA.8端口
u32 t;//定义一个全局变量
int main(void)
{
// SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8);
       SysTick_Config(9000000);
       SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8);
       GPIO_Configuration();
       while(1);      
}
//GPIOA.8设置函数
void GPIO_Configuration(void)
{
GPIO_InitTypeDef  GPIO_InitStruct;//定义一个端口初始化结构体
       RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//打开GPIOA口时钟
       GPIO_InitStruct.GPIO_Mode=GPIO_Mode_Out_PP;//设置为推挽输出
       GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;//设置输出频率50M
       GPIO_InitStruct.GPIO_Pin=GPIO_Pin_8;//指定第8脚
       GPIO_Init(GPIOA,&GPIO_InitStruct);//初始化GPIOA.8      
       GPIO_SetBits( GPIOA,  GPIO_Pin_8);//置高GPIOA.8,关闭LED
}
//systick中断函数
void SysTick_Handler(void)
{
t++;
       if(t>=1)
       {
              if(GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_8)==1)
              {GPIO_ResetBits( GPIOA, GPIO_Pin_8);}      
       }
       if(t>=2)
       {
              if(GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_8)==0)
                     {GPIO_SetBits( GPIOA, GPIO_Pin_8);}
                     t=0;
       }
}
模拟后的结果
1、8分频后结果

2、直接调用SysTick_Config(9000000);即不分频的结果,间隔为1/8=0.125s

总结:
1、要使用systick定时器,只需调用SysTick_Config(uint32_t ticks)函数即可,
   自动完成了,重装载值的装载,时钟源选择,计数寄存器复位,中断优先级的设置(最低),开中断,开始计数的工作。
2、要修改时钟源调用SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)。
3、要修改中断优先级调用
     void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
应用说明:
1、因systick是一个24位的定时器,故重装值最大值为2的24次方=16 777 215,
   要注意不要超出这个值。
2、systick是cortex_m3的标配,不是外设。故不需要在RCC寄存器组打开他的时钟。
3、每次systick溢出后会置位计数标志位和中断标志位,计数标志位在计数器重装载后被清除,而中断标志位也会随着中断服务程序的响应被清除,所以这两个标志位都不需要手动清除。
4、采用使用库函数的方法,只能采用中断的方法响应定时器计时时间到,如要采用查询的方法,那只能采用设置systick的寄存器的方法,具体操作以后再做分析。

stm32之Cortex系统定时器(SysTick)的更多相关文章

  1. 实现流水灯以间隔500ms的时间闪烁(系统定时器SysTick实现的精确延时)

    /** ****************************************************************************** * @file main.c * ...

  2. STM32F103ZET6系统定时器SysTick

    1.系统定时器SysTick的简介 系统定时器SysTick属于内核外设,内嵌在NVIC中.SysTick是一个24位的向下递减的计数器,计数器根据SysTick的时钟源计数,当SysTick的计数器 ...

  3. 使用系统定时器SysTick实现精确延时微秒和毫秒函数

    SysTick定时器简介 SysTick定时器是存在于系统内核的一个滴答定时器,只要是ARM Cortex-M0/M3/M4/M7内核的MCU都包含这个定时器,它是一个24位的递减定时器,当计数到 0 ...

  4. STM32—SysTick系统定时器

    SysTick是STM32中的系统定时器,利用SysTick可以实现精确的延时. SysTick-系统定时器 属于 CM3 内核中的一个外设,内嵌在 NVIC 中.系统定时器是一个 24bit 的向下 ...

  5. STM32 的系统滴答定时器( Systick) 彻底研究解读

    作者:王健 前言 SysTick 比起那些 TIM 定时器可以说简单多啦~~~~~哥的心情也好了不少, 嘎嘎!! ARM Cortex-M3 内核的处理器内部包含了一个 SysTick 定时器,它是一 ...

  6. 第18章 SysTick—系统定时器

    第18章     SysTick—系统定时器 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/ ...

  7. 第18章 SysTick—系统定时器—零死角玩转STM32-F429系列

    第18章     SysTick—系统定时器 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/ ...

  8. 系统滴答定时器(SysTick)中断配置

    系统滴答定时器(SysTick)中断配置 在STM32标准库中是通过SysTick_Config()函数配置时钟中断的,然后SysTick_Handler()函数自动定时触发其中的函数. if(Sys ...

  9. SysTick—系统定时器

    本章参考资料<ARM Cortex™-M4F 技术参考手册> -4.5 章节 SysTick Timer(STK), 和4.48 章节 SHPRx,其中 STK 这个章节有 SysTick ...

随机推荐

  1. JavaSE---悲观锁与乐观锁

    1.[悲观锁] 1.1 在数据处理的整个过程中,数据将处于锁定状态: 1.2 悲观锁的实现,依赖于数据库提供的锁机制(只有数据库提供的锁机制才能真正保证数据访问的排他性,否则,即使在系统中加锁机制,也 ...

  2. 057 Insert Interval 插入区间

    给出一个无重叠的按照区间起始端点排序的区间列表.在列表中插入一个新的区间,你要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间).示例 1:给定区间 [1,3],[6,9],插入并合并 ...

  3. canvas前端压缩图片

    参考网上的用法,下面是利用canvas进行的图片压缩 <!DOCTYPE html> <html> <head> <meta charset="ut ...

  4. 单周期cpu设计代码解读

    目录 写在前面 单周期cpu设计代码讲解 概念回顾 Verilog代码讲解 写在前面 欢迎转载,转载请说明出处. 单周期cpu设计代码讲解 概念回顾 一.电子计算机的部件 分为:中央处理器(cpu). ...

  5. 小G搭积木

    A小 G 搭积木文件名 输入文件 输出文件 时间限制 空间限制box.cpp box.in box.out 2s 128MB题目描述小 G 喜欢搭积木.小 G 一共有 n 块积木,并且积木只能竖着一块 ...

  6. 关于使用memcached提高并发的文章,很有用

    http://blog.csdn.net/ywh147/article/details/9385137 http://phl.iteye.com/category/292555 memcached 解 ...

  7. 字符串和byte数组的相互转化

    关于byte[]数组转十六进制字符串: public static String getHexString(byte[] b) throws Exception { String result = & ...

  8. 常用API(Object、String、StringBuffer、用户登陆注册)

    常用API 今日内容介绍 u Object u String u StringBuilder 第1章 Java的API及Object类 在以前的学习过程中,我们都在学习对象基本特征.对象的使用以及对象 ...

  9. Mac、Linux下两个Emacs共享一个配置文件

    Mac.Linux下两个Emacs共享一个配置文件 有些嵌入式的实验需要在Linux进行,就安装了RHEL6.4的虚拟机,下载并编译了Emacs. 在Linux的.emacs文件中加入以下语句,即可引 ...

  10. Jenkins访问路径配置自定义的相对路径

    Jenkins安装时没有配置自定义的相对访问路径,例如配置的端口是29957,那访问路径就是http://localhost:29957.以下介绍把访问路径改成http://localhost:299 ...