Description

奶牛想证明他们是聪明而风趣的。为此,贝西筹备了一个奶牛博览会,她已经对N头奶牛进行了面试,确定了每头奶牛的智商和情商。

贝西有权选择让哪些奶牛参加展览。由于负的智商或情商会造成负面效果,所以贝西不希望出展奶牛的智商之和小于零,或情商之和小于零。满足这两个条件下,她希望出展奶牛的智商与情商之和越大越好,请帮助贝西求出这个最大值。

Input Format

第一行:一个整数N,表示奶牛的数量,1 ≤ N ≤ 100

第二行到第N + 1行:第i + 1行有两个用空格分开的整数:Si和Fi,分别表示第i头奶牛的智商和情商,−1000 ≤ Si ≤ 1000,−1000 ≤ Fi ≤ 1000

Output Format

第一行:单个整数,表示情商与智商和的最大值。贝西可以不让任何奶牛参加展览,如果这样应该输出0

Sample Input

5

-5 7

8 -6

6 -3

2 1

-8 -5

Sample Output

8

Hint

(选择 1,3,4 号奶牛,此时智商和为−5 + 6 + 2 = 3,情商和为7 − 3 + 1 = 5。加入 2 号奶牛可使总和提升到10,不过由于情商和变成负的了,所以是不允许的)

Solution

这题很容易想到DP,乍一看有点像01背包,每个牛都有选或者不选,但是仔细分析会发现这样不行。

在转移的过程中很难考虑智商以及情商大于0,简单来说就是有后效性。

那么又看到情商或智商绝对值小于1000,答案最大只能为200000,想到可以使dp[i]表示答案为i的方案是否存在,

但也很难判断智商和情商大于0,所以不妨将答案拆开为2部分,即

dp[i]表示情商和达到i的最大智商为多少

这个地方很关键,理解了这道题就简单了,

情商和为负数的情况也要考虑所以数组下标要向右移一段距离即加上一个常数,

情商最大和为100000,数组就开200000(正负各100000)

然后发现变成了01背包,不过要注意情商是恰好为i而不是不是最大为i,所以开始要把dp数组初始化为负无穷,然后dp[0+M]=0(这里M为一个常数),普通的01背包是初始化为0,原因这里不展开

状态转移的时候,要对w[i]的正负分情况转移,为正倒着做,为负正着做

最后答案就为max{dp[i+M]+i},0<=i<=M且dp[i+M]>0,i为情商dp[i+m]为智商

Code

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int n, m, w[110], v[110], dp[200010]; int main()
{
freopen("in.txt", "r", stdin);
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d%d", &w[i], &v[i]);
if (w[i] > 0) m += w[i];
}
memset(dp, -127 / 2, sizeof(dp));
dp[m] = 0;
m *= 2;
for (int i = 1; i <= n; ++i) {
if (w[i] > 0)
for (int j = m; j >= w[i]; j--)
dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
else for (int j = 0; j <= m + w[i]; j++)
dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
}
int Ans = 0;
m /= 2;
for (int i = 0; i <= m; ++i)
if (dp[i + m] > 0) Ans = max(Ans, dp[i + m] + i);
printf("%d\n", Ans);
return 0;
}

[USACO]奶牛博览会(DP)的更多相关文章

  1. USACO奶牛博览会(DP)

    Description 奶牛想证明他们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N头奶牛进行了面试,确定了每头奶牛的智商和情商. 贝西有权选择让哪些奶牛参加展览.由于负的智商或情商会造成 ...

  2. [USACO]奶牛会展(背包)

    [USACO]奶牛会展 题目背景 奶牛想证明它们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N 头奶牛进行 了面试,确定了每头奶牛的智商和情商. 题目描述 贝西有权选择让哪些奶牛参加展览. ...

  3. 奶牛抗议 DP 树状数组

    奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...

  4. USACO 奶牛抗议 Generic Cow Protests

    USACO 奶牛抗议 Generic Cow Protests Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望 ...

  5. P2340 奶牛会展 DP 背包

    P2340 奶牛会展 DP \(n\)头牛,每头牛有智商\(s[i]\)情商\(f[i]\),问如何从中选择几头牛使得智商情商之和最大 且 情商之和.智商之和非负 \(n\le 400,-10^3\l ...

  6. [USACO]奶牛抗议(DP+树状数组+离散化)

    Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望奶牛在抗议时保持理性,为此,他打算将所有的奶牛隔离成 若干个小组 ...

  7. BZOJ_1616_[Usaco2008_Mar]_Cow_Travelling_游荡的奶牛_(DP)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1616 给出一张图,有些点不能走,给出起始点和结束点,以及时间,求在该时间到达结束点的方案数. ...

  8. usaco 奶牛接力

    Description 为增强体质,约翰决定举办一场奶牛接力跑比赛.比赛现场有一些接力位置,这些位置间有T条路连接,第i条路的长度为Li. 有N头奶牛需要参加比赛,领头的奶牛从位置S出发,她会按照你的 ...

  9. [Usaco2008 Mar]Cow Travelling游荡的奶牛[简单DP]

    Description 奶牛们在被划分成N行M列(2 <= N <= 100; 2 <= M <= 100)的草地上游走,试图找到整块草地中最美味的牧草.Farmer John ...

随机推荐

  1. 汇编语言版本的HelloWorld

    平台 macOS 工具 nasm clang 文件 main.asm extern _printf ; 这里调用系统的一个系统调用函数, _printf, 使用extern告诉链接器该label在其他 ...

  2. Unity3D C# 学习List数据类型的使用

    List<T>类是ArrayList 类的泛型等效类. 该类使用大小可按需动态增加的数组实现 泛型的好处: 它为使用 c#语言编写面向对象程序增加了极大的效力和灵活性.不会强行对值类型进行 ...

  3. 《大话设计模式》num03-04-05---单一职责原则、开放封闭原则、依赖倒转原则

    2018年03月03日 21:19:19 独行侠的守望 阅读数个人分类: 设计模式 版权声明:本文为博主原创文章,转载请注明文章链接. https://blog.csdn.net/xiaoanzi12 ...

  4. servlet传值到servlet传值问题

    今天在项目中遇到一个问题:中期项目自己做的新闻部分NewsPagerSortservlet传值时,正确答案如下 if(title!=""){ resp.sendRedirect(& ...

  5. blog 题解目录

    洛谷: 1.P2430 严酷的训练 2.CF784E Twisted Circuit 3.P1886 滑动窗口 4.P1090 合并果子 5.P1119 灾后重建 6.P1690 贪婪的Copy 7. ...

  6. 用C#来控制高级安全Windows防火墙

    有的时候我们需要在自己的产品中检测<高级安全Windows防火墙>的状态,并有可能需要加入一些规则甚至需要关闭掉高级安全Windows防火墙. 下面就告诉如何来做: <高级安全Win ...

  7. SqlServer查询文件组被占用情况

    在SqlServer中,删除一个文件组 alter database [xxxxx] remove filegroup FGMonthTurnIntroduceByMonth13 有时候会遇到如下报错 ...

  8. centos6.5_64bit安装Redis3.2.8

    一.去官网下载最新稳定版 https://redis.io/   二.打开redis需要的端口 /sbin/iptables -I INPUT -p tcp --dport 6379 -j ACCEP ...

  9. 关于dependencies和devDependencies的理解

    npm install 会下载dependencies和devDependencies中的模块,当使用npm install --production或者注明NODE_ENV变量值为productio ...

  10. 为什么表单中post接受数据是获取name值而不是id值

    感谢解惑者:http://blog.csdn.net/u013451157/article/details/78503831 表单(form)的控件名,提交的数据都用控件的name而不是id来控制.  ...