3130: [Sdoi2013]费用流

Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special Judge
Submit: 1230  Solved: 598
[Submit][Status][Discuss]

Description

Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识。
    最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量。一个合法的网络流方案必须满足:(1)每条边的实际流量都不超过其最大流量且非负;(2)除了源点S和汇点T之外,对于其余所有点,都满足该点总流入流量等于该点总流出流量;而S点的净流出流量等于T点的净流入流量,这个值也即该网络流方案的总运输量。最大流问题就是对于给定的运输网络,求总运输量最大的网络流方案。

上图表示了一个最大流问题。对于每条边,右边的数代表该边的最大流量,左边的数代表在最优解中,该边的实际流量。需要注意到,一个最大流问题的解可能不是唯一的。    对于一张给定的运输网络,Alice先确定一个最大流,如果有多种解,Alice可以任选一种;之后Bob在每条边上分配单位花费(单位花费必须是非负实数),要求所有边的单位花费之和等于P。总费用等于每一条边的实际流量乘以该边的单位花费。需要注意到,Bob在分配单位花费之前,已经知道Alice所给出的最大流方案。现茌Alice希望总费用尽量小,而Bob希望总费用尽量大。我们想知道,如果两个人都执行最优策略,最大流的值和总费用分别为多少。

Input

第一行三个整数N,M,P。N表示给定运输网络中节点的数量,M表示有向边的数量,P的含义见问题描述部分。为了简化问题,我们假设源点S是点1,汇点T是点N。
    接下来M行,每行三个整数A,B,C,表示有一条从点A到点B的有向边,其最大流量是C。

Output

第一行一个整数,表示最大流的值。
第二行一个实数,表示总费用。建议选手输出四位以上小数。

Sample Input

3 2 1
1 2 10
2 3 15

Sample Output

10
10.0000

HINT

【样例说明】

对于Alice,最大流的方案是固定的。两条边的实际流量都为10。

对于Bob,给第一条边分配0.5的费用,第二条边分配0.5的费用。总费用

为:10*0.5+10*0.5=10。可以证明不存在总费用更大的分配方案。

【数据规模和约定】

对于20%的测试数据:所有有向边的最大流量都是1。

对于100%的测试数据:N < = 100,M < = 1000。

对于l00%的测试数据:所有点的编号在I..N范围内。1 < = 每条边的最大流

量 < = 50000。1 < = P < = 10。给定运输网络中不会有起点和终点相同的边。

Source

想法:题目中“Bob在分配单位花费之前,已经知道Alice所给出的最大流方案”,就是说Alice选了一个方案后,Bob才分配。通过乘法分配律什么的,可以得到Bob把花费全放在在流量最大的那条边上的总费用最优。于是限制一下通过一条边的最大流量。

鉴于$\frac{最大流}{路径数}$可能为实数,所以上限可以是实数。然后就是二分+网络流了.....

#include<cstdio>

typedef long long ll;
const int MAXN(),MAXM();
const double eps(1e-),INF(0x7fffffff);
int n,m,p,a[MAXM],b[MAXM],c[MAXM],S,T;
double sum,big_flow,small_cost;
struct Node{int nd,nx;double fl;}bot[MAXM<<];int tot=,first[MAXN];
void add(int a,int b,double f){bot[++tot]=(Node){b,first[a],f};first[a]=tot;}
void addedge(int a,int b,double f){add(a,b,f);add(b,a,);}
double min(double a,double b){return a>b?b:a;}
void build(double limt)
{
for(int i=;i<=n;i++)first[i]=;tot=;
for(int i=;i<=m;i++) addedge(a[i],b[i],min(limt,c[i]));
}
int q[MAXN],dis[MAXN],l,h,now;
bool bfs(int S,int T)
{
for(int i=;i<=n;i++)dis[i]=INF;
q[l=]=S;dis[S]=;h=;
while(h<l)
{
now=q[++h];
for(int v=first[now];v;v=bot[v].nx)
if(bot[v].fl>eps&&dis[bot[v].nd]==INF)
q[++l]=bot[v].nd,dis[bot[v].nd]=dis[now]+;
}
return dis[T]!=INF;
}
double dfs(int x,int T,double flow)
{
if(x==T)return flow;
double sum=,tmp;
for(int v=first[x];v;v=bot[v].nx)
if(bot[v].fl>eps&&dis[bot[v].nd]==dis[x]+)
{
tmp=dfs(bot[v].nd,T,min(bot[v].fl,flow));
sum+=tmp; flow-=tmp;
bot[v].fl-=tmp; bot[v^].fl+=tmp;
if(!flow)break;
}
if(!sum)dis[x]=-;
return sum;
}
bool ok(double limt)
{
build(limt); sum=;
while(bfs(S,T)) sum+=dfs(S,T,INF);
return sum>=big_flow-eps;
}
int main()
{
// freopen("C.in","r",stdin);
// freopen("C.out","w",stdout);
scanf("%d %d %d",&n,&m,&p);S=;T=n;
for(int i=;i<=m;i++) scanf("%d %d %d",a+i,b+i,c+i);
ok(INF); big_flow=sum;
for(double l=,r=big_flow,mid;l+eps<r;)
if(ok(mid=(l+r)/))r=mid,small_cost=mid;else l=mid;
printf("%.0lf\n%.4lf\n",big_flow,small_cost*p);
return ;
}

BZOJ 3130: [Sdoi2013]费用流 网络流+二分的更多相关文章

  1. BZOJ 3130: [Sdoi2013]费用流 网络流 二分 最大流

    https://www.lydsy.com/JudgeOnline/problem.php?id=3130 本来找费用流的题,权当复习一下网络流好了. 有点麻烦的是double,干脆判断大小或者二分增 ...

  2. bzoj 3130 [Sdoi2013]费用流(二分,最大流)

    Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识.    最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络 ...

  3. BZOJ 3130 [Sdoi2013]费用流 ——网络流

    [题目分析] 很容易想到,可以把P放在流量最大的边上的时候最优. 所以二分网络流,判断什么时候可以达到最大流. 流量不一定是整数,所以需要实数二分,整数是会WA的. [代码] #include < ...

  4. bzoj 3130: [Sdoi2013]费用流

    #include<cstdio> #include<iostream> #define M 10000 #define inf 0x7fffffff #include<c ...

  5. 3130: [Sdoi2013]费用流

    Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络流方案 ...

  6. BZOJ 1283 序列 费用流 网络流 线性规划

    https://darkbzoj.cf/problem/1283 给出一个长度为N的正整数序列Ci,求一个子序列,使得原序列中任意长度为M的子串中被选出的元素不超过K(K,M<=100) 个,并 ...

  7. BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]

    3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 960  Solved: 5 ...

  8. bzoj千题计划133:bzoj3130: [Sdoi2013]费用流

    http://www.lydsy.com/JudgeOnline/problem.php?id=3130 第一问就是个最大流 第二问: Bob希望总费用尽量大,那肯定是把所有的花费加到流量最大的那一条 ...

  9. P3305 [SDOI2013]费用流

    题目描述 Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量. 一个合法的网络流方案必须满足: ...

随机推荐

  1. plsql&nbsp;分页

     select * from (select rownum rn,ps.* from (select * from user_t) ps ) where rn>=1 and rn<=10 ...

  2. 《Java多线程编程核心技术》读后感(十六)

    线程组 线程组的作用是,可以批量的管理线程或线程组对象,有效地对线程或线程组对象进行组织 线程对象关联线程组:1级关联 package Seven; public class ThreadA exte ...

  3. HDU - 5094 Maze(状压+bfs)

    Maze This story happened on the background of Star Trek. Spock, the deputy captain of Starship Enter ...

  4. linux命令之ll按时间和大小排序显示

    ll不是命令,是ls -l的别名 按大小排序 [root@localhost ~]# ll -Sh 按时间排序 [root@localhost ~]# ll -rt ll -t 是降序, ll -t ...

  5. Python学习笔记(正则表达式)

    \b - 表示以什么开头或结尾 \d - 匹配数字 \w - 匹配字母或数字或下划线或汉字(我试验下了,发现3.x版本可以匹配汉字,但2.x版本不可以) \s - 匹配任意的空白符 ^ - 匹配字符串 ...

  6. thinkphp5实现mysql数据库还原

    数据库还原其实就是从.sql文件中读取一行一行的命令,然后执行 需要配置数据库文件database.php,数据库名,主机名,用户名,密码这里就不说了,这里说的要配置数据库连接参数 'params' ...

  7. moment.js插件的简单上手使用

    开发过程中看长篇幅的技术文档是件多么影响多发效率的事情丫,哼哼,人家明明只是想用个简单的功能而已丫,下面文档很好的解决了这个问题,yeah~~~ 一.monent.js时间插件 1.Moment.js ...

  8. 关于Django查询知识点总结

    ========关于Django查询知识点总结======= models.Book.objects.filter(**kwargs): querySet [obj1,obj2] models.Boo ...

  9. CodeForces - 508B-Anton and currency you all know

    Berland, 2016. The exchange rate of currency you all know against the burle has increased so much th ...

  10. 微服务的.NET Core示例框架

    eShopOnContainers 是一个基于微服务的.NET Core示例框架 https://www.cnblogs.com/fengqingyangNo1/p/9438428.html 找到一个 ...