一句话题意:给你一个包含n个元素的集合,问有多少个非空子集,能划分成和相等的两份。(n<=20)

题解:对于这道题,我们很轻易可以列出\(O(3^n)\)的暴力,这是显然过不了的,观察这道题的性质可以发现我们显然可以查找左半边把值扔到hash表里,然后查找右半边的时候更新答案,这是显然正确的,因为我们对于hash表维护的的是两个集合的差值,所以不用担心每半边内部的情况会判不到。

#include<cstdio>
#include<algorithm>
using namespace std;
int now,n,h[1000011],nxt[1000011],a[1000011],B[1000011],A[1000011],nm[22],ans;
bool vis[10000011];
const int mod=1000007;
void ins(int x,int y)
{
int k=abs(x)%mod;
for(int i=h[k];i;i=nxt[i])
if(A[i]==x&&B[i]==y)return ;
++now;nxt[now]=h[k];h[k]=now;A[now]=x;B[now]=y;
}
void get(int x,int y)
{
int k=abs(x)%mod;
for(int i=h[k];i;i=nxt[i])
if(A[i]==x)vis[y+B[i]]=1;
}
void dfs2(int x,int y,int z)
{
if(x==n+1)
{
get(y,z);
return ;
}
dfs2(x+1,y+a[x-1],z+nm[x-1]);
dfs2(x+1,y-a[x-1],z+nm[x-1]);
dfs2(x+1,y,z);
}
void dfs1(int x,int y,int z)
{
if(x==n/2+1)
{
ins(y,z);
return ;
}
dfs1(x+1,y+a[x-1],z+nm[x-1]);
dfs1(x+1,y-a[x-1],z+nm[x-1]);
dfs1(x+1,y,z);
}
int main()
{
scanf("%d",&n);
nm[0]=1;
for(int i=1;i<=21;i++)nm[i]=nm[i-1]<<1;
for(int i=1;i<=n;i++)scanf("%d",&a[i-1]);
dfs1(1,0,0);dfs2(n/2+1,0,0);
for(int i=1;i<=(1<<n);i++)if(vis[i])ans++;
printf("%d",ans);
}

subsets(2018.10.16)的更多相关文章

  1. 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)

    传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...

  2. swap(2018.10.16)

    题意:给定一个{0,1,2,3,-,n-1}的排列 p. 一个{0,1,2 ,-,n-2}的排列 q 被认为是优美的排列, 当且仅当 q 满足下列条件 对排列 s={0,1,2,3,...,n-1}进 ...

  3. 在 .NET项目中使用 Redis(2018.10.16)

    1. 打开NuGet管理器搜索redis,安装:“StackExchange.Redis” 2. 配置 Web.config 文件 <connectionStrings> <add ...

  4. 2018.10.16 spoj Can you answer these queries V(线段树)

    传送门 线段树经典题. 就是让你求左端点在[l1,r1][l1,r1][l1,r1]之间,右端点在[l2,r2][l2,r2][l2,r2]之间且满足l1≤l2,r1≤r2l1\le l2,r1 \l ...

  5. 2018.10.16 NOIP模拟 长者(主席树+hash)

    传送门 考试的时候开始sb的以为需要可持久化trietrietrie树,发现建树时空都是O(n2)O(n^2)O(n2)的. 然后发现由于每次只从原来的字符串改一个字符. 因此直接主席树维护区间has ...

  6. 2018.10.16 NOIP模拟 华莱士(并查集)

    传送门 按照题意模拟维护最小的环套树森林就行了. 然而考试的时候naivenaivenaive瞎写了一个错误的贪心. 代码

  7. 2018.10.16 NOIP模拟 膜法(组合数学)

    传送门 原题,原题,全TM原题. 不得不说天天考原题. 其实这题我上个月做过类似的啊,加上dzyodzyodzyo之前有讲过考试直接切了. 要求的其实就是∑i=lr(ii−l+k)\sum _{i=l ...

  8. 2018.10.16 NOIP模拟赛解题报告

    心路历程 预计得分:\(100 + 100 + 20 = 220\) 实际得分:\(100 + 100 + 30 = 230\) 辣鸡模拟赛.. T1T2都是一眼题,T3考验卡常数还只有一档暴力分. ...

  9. 2018.10.16 Java的IO与NIO

    IO流学习总结 一 Java IO,硬骨头也能变软 二 java IO体系的学习总结 三 Java IO面试题 NIO与AIO学习总结 一 Java NIO 概览 二 Java NIO 之 Buffe ...

随机推荐

  1. Kotlin基本语法笔记之函数、变量的定义及null检测

    定义函数 fun sum(a: Int, b: Int): Int { return a + b } 该函数中两个参数的类型都是Int,返回类型是Int 也可以做如下简化 fun sum(a: Int ...

  2. React-Router4按需加载

    其实几种实现都是近似的,但具体上不太一样,其中有些不需要用到bundle-loader 第一种:ReactTraining/react-router 介绍的基于 webpack, babel-plug ...

  3. Spring 配置JNDI数据源

    1.Spring 提供的JNDI调用类. 2.使用weblogic进行部署项目,所以使用WebLogicNativeJdbcExtrator类进行配置. 3.配置完数据源后配置sessionFacto ...

  4. Vue 组件实例属性的使用

    前言 因为最近面试了二.三十个人,发现大部分都还是只是停留在 Vue 文档的教程.有部分连教程这部分的文档也没看全.所以稍微写一点,让新上手的 Vuer 多了解 Vue 文档的其他更需要关注的点. 因 ...

  5. 多线程辅助类-CountDownLatch的用法

    转自:http://www.iteye.com/topic/1002652 CountDownLatch,一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待. 主要方 ...

  6. codeforces 702B B. Powers of Two(水题)

    题目链接: B. Powers of Two time limit per test 3 seconds memory limit per test 256 megabytes input stand ...

  7. Gulp-webpack简单应用

    1.配置环境:  在  webstorm  的控制台中  (1) cnpm install --save-dev gulp    (2)  cnpm install --save-dev gulp-w ...

  8. bzoj2959

    lct+并查集 联赛之后忘了很多东西 复习一下 这并不是一棵树,所以我们不能直接上lct 但是把双联通分量缩了以后就是一棵树了 怎么缩呢 就是把splay拆了合并到一个点上 连通性和双联通分量拿两个并 ...

  9. 2.row_number() over (partition by col1 order by col2)的用法

    row_number() over (partition by col1 order by col2) 表示根据COL1分组,在分组内部根据 COL2排序,而此函数计算的值就表示每组内部排序后的顺序编 ...

  10. StarUML中时序图

    StarUML中时序图 在看时序图的例子的时候,发现有些的时序图上有小人的图标,可是一些UML工具却没有找到小人的图标,这让我很闹心,一直没解决,今天终于将该问题给解决了.解决这个问题来自于网上的一个 ...