The challenge of realistic music generation: modelling raw audio at scale

作者:Deep  mind三位大神

出处:NIPS 2018

  • Abstract

首先提出了基于表达方式的音乐生成(high-level representations such as scoresor MIDI)有一些自己的问题,经过高度抽象后,音乐中的一些细节特征损失掉了,从而导致perception of musicality and realism 的损失。本文的音乐数据生成在raw audio domain中进行。autoregressive models(自回归模型)在处理波形speech数据中表现不俗,但在处理音乐时,we find them biased towards capturing local signal structure at the expense of modelling long-range correlations,于是本文提出autoregressive discrete autoencoders (ADAs) 帮助AR model capture long-range correlations in waveforms。

  • Introduction

强调了music在不同的timescale上展现的structure特性,并且列出了midi等表示形式的限制,主要还是在丢失音乐性相关细节和乐器相关细节上。

1.1 raw audio signal

吹了一波wave signal的好处,优势,和上面提到的midi做比较,并指出在wave形式下建模更具挑战性和难度。

1.2 相关生成模型

相比于表示型数据,audio waveforms生成模型的研究历史并不长,原因是:This was long thought to be infeasible due to the scale of the problem, as audio signals are often sampled at rates of 16 kHz or higher(不太明白为什么,应该是采样成本较高). 近期的AR模型采用step步进的方式来进行生成,如Wavenet,VRNN,WaveRNN,SampleRNN,解决了采样成本的问题,这里也提到了用GAN来生成波形文件。

贡献:1.提出文献关注点较少的raw audio domain的生成模型,可以作为benchmark测试ability of a model to capture long-range structure in data

2. We investigate the capabilities of autoregressive models for this task, and demonstrate a computationally efficient method to enlarge their receptive fields using autoregressive discrete autoencoders (ADAs)

3. introduce the argmax autoencoder (AMAE) as an alternative to vector quantisation variational autoencoders (VQ-VAE)

  • Scaling up autoregressive models for music

要为long-range structure建模,需要enlarge the receptive fields,wavenet,sampleRNN都提出自己的方式来扩大接受野,但内存限制很容易触及天花板

(未完待续)

重要参考文献:

Arecurrent latent variable model for sequential data

Experiments in musical intelligence

Synthesizing audio with generative adversarial networks

Samplernn: An unconditional end-to-end neural audio generation model

《The challenge of realistic music generation: modelling raw audio at scale》论文阅读笔记的更多相关文章

  1. 《MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment》论文阅读笔记

    出处:2018 AAAI SourceCode:https://github.com/salu133445/musegan abstract: (写得不错 值得借鉴)重点阐述了生成音乐和生成图片,视频 ...

  2. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

  3. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  4. 生成对抗网络(Generative Adversarial Networks, GAN)

      生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一.   GAN 主要包括了两个部分,即 ...

  5. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  6. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  7. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

  8. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  9. SalGAN: Visual saliency prediction with generative adversarial networks

    SalGAN: Visual saliency prediction with generative adversarial networks 2017-03-17 摘要:本文引入了对抗网络的对抗训练 ...

  10. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

随机推荐

  1. POJ 3978(求素数)

    知识点:      1.求素数的test,从2~sqrt(n):           2.假设数据非常多,能够用素数表记录,然后sum=prime[m]-prime[n]求得! ! !! !!! !! ...

  2. 更改 vux Tabbar TabbarItem标题下方的文字激活时的颜色

    步骤一: 打开文件build/webpack.base.conf.js, 找到modeule.exports = vuxLoader, 修改如下(并保存) module.exports = vuxLo ...

  3. POJ 2249-Binomial Showdown(排列组合计数)

    Binomial Showdown Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18457   Accepted: 563 ...

  4. PCIE、UART、HDA、I2C、SMBUS、SPI、eSPI、USB、PS2、CAN、SDIO等数据传输协议简介

    M.2 wife一般支持USB.SDIO.PCIE三种传输 1.摄像头 (1)MIPI CSI (2)USB mipi摄像头模组IC简单便宜(小),应为一般把ADC解码在CPU端. MIPI摄像头简介 ...

  5. 基于Redis缓存的Session共享测试(转)

    本机ip为192.168.1.101 1.准备测试环境 两个Tomcat 在Eclipse中新建2个Servers,指定对应的Tomcat,端口号错开. Tomcat1(18005.18080.180 ...

  6. docker--caffe

    Running an official image You can run one of the automatic builds. E.g. for the CPU version: docker ...

  7. 惊艳的cygwin——Windows下的Linux命令行环境的配置和使用

    http://www.tuicool.com/articles/2MramqI 时间 2014-07-29 09:28:36  点滴之间 聚沙成金 原文  http://www.path8.net/t ...

  8. linux 查找最后几条数据

    tail(选项)(参数) -n<N>或——line=<N>:输出文件的尾部N(N位数字)行内容. 例如:grep 查询 2018-02-*/*.log |tail -n 5查询 ...

  9. 用live555将内网摄像机视频推送到外网服务器,附源码

    最近很多人问,如何将内网的摄像机流媒体数据发布到公网,如果用公网与局域网间的端口映射方式太过麻烦,一个摄像机要做一组映射,而且不是每一个局域网都是有固定ip地址,即使外网主机配置好了每一个摄像机的映射 ...

  10. ZOJ - 3948 Marjar Cola 【循环】

    题目链接 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3948 题意 用 x 个 瓶身 可以 换 一瓶饮料 用 y 个 瓶 ...