Codeforces554D:Kyoya and Permutation
Let's define the permutation of length n as an array p = [p1, p2, ..., pn] consisting
of n distinct integers from range from 1 to n.
We say that this permutation maps value 1 into the value p1,
value 2 into the value p2 and
so on.
Kyota Ootori has just learned about cyclic representation of a permutation. A cycle is a sequence of numbers such that each element
of this sequence is being mapped into the next element of this sequence (and the last element of the cycle is being mapped into the first element of the cycle). The cyclic representation is a
representation of p as a collection of cycles forming p.
For example, permutationp = [4, 1, 6, 2, 5, 3] has a cyclic representation that
looks like (142)(36)(5) because 1 is replaced by 4, 4 is replaced by 2, 2 is replaced by 1, 3 and 6 are swapped, and 5 remains in place.
Permutation may have several cyclic representations, so Kyoya defines the standard cyclic representation of a permutation as follows. First, reorder the elements within each cycle so the largest
element is first. Then, reorder all of the cycles so they are sorted by their first element. For our example above, the standard cyclic representation of [4, 1, 6, 2, 5, 3] is (421)(5)(63).
Now, Kyoya notices that if we drop the parenthesis in the standard cyclic representation, we get another permutation! For instance,[4, 1, 6, 2, 5, 3] will
become [4, 2, 1, 5, 6, 3].
Kyoya notices that some permutations don't change after applying operation described above at all. He wrote all permutations of length nthat
do not change in a list in lexicographic order. Unfortunately, his friend Tamaki Suoh lost this list. Kyoya wishes to reproduce the list and he needs your help. Given the integers n and k,
print the permutation that was k-th on Kyoya's list.
The first line will contain two integers n, k (1 ≤ n ≤ 50, 1 ≤ k ≤ min{1018, l} where l is
the length of the Kyoya's list).
Print n space-separated integers, representing the permutation that is the answer for the question.
4 3
1 3 2 4
10 1
1 2 3 4 5 6 7 8 9 10
The standard cycle representation is (1)(32)(4), which after removing parenthesis gives us the original permutation. The first permutation on
the list would be [1, 2, 3, 4], while the second permutation would be [1, 2, 4, 3].
题意:
给出n,k。代表有包括1~n的一个数组。通过对这些数进行一些排列,对于当中的一个序列,第i个位置会指向第a[i]个位置,如此便会形成一些环,将这些环合并成一组。按大到小排序,然后对于形成的多组而言,依照每一组开头数字的大小从小大大排序,形成一个新的序列
而对于这些序列而言,当中有一些序列依照题意的分类排序方法得到的新序列是与本身相等的,如今要求这些序列中的第k个是多少。k不会超过这样的序列的总数
思路:
对于这样的类型的序列,那么必定是交换相邻的两个。并且已经交换过了的是不能再交换了,而当中数量又与斐波那契数有关系
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 100005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+7; LL n,k;
LL a[55]; int main()
{
LL i,j;
a[0] = a[1] = 1;
for(i = 2;i<=50;i++)
{
a[i] = a[i-1]+a[i-2];
}
scanf("%I64d%I64d",&n,&k);
LL c1 = 1,c2 = 2;
while(n>0)
{
if(k>a[n-1])
{
printf("%I64d %I64d ",c2,c1);
k-=a[n-1];
n-=2;
c2+=2;
c1+=2;
}
else
{
printf("%I64d ",c1);
n--;
c1++;
c2++;
}
}
printf("\n"); return 0;
}
Codeforces554D:Kyoya and Permutation的更多相关文章
- Codeforces Round #309 (Div. 1) B. Kyoya and Permutation 构造
B. Kyoya and Permutation Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/ ...
- Codeforces Round #309 (Div. 2) -D. Kyoya and Permutation
Kyoya and Permutation 这题想了好久才写出来,没看题解写出来的感觉真的好爽啊!!! 题目大意:题意我看了好久才懂,就是给你一个序列,比如[4, 1, 6, 2, 5, 3],第一个 ...
- codeforces 553B B. Kyoya and Permutation(找规律)
题目链接: B. Kyoya and Permutation time limit per test 2 seconds memory limit per test 256 megabytes inp ...
- Codeforces 553B Kyoya and Permutation
problem 题意 本题题意不太easy看懂. 给定一个序列,我们能够把这个序列变成一些循环置换的和.然而这样的置换的方法是不止一种的.我们定义一种standard cyclic represent ...
- 【Codeforces】【#295】【Div.1】
嘛,一直以来蒟蒻都没怎么打过CF……现在还是蓝名狗……今天跟着zyf打了一场virtual,果断一题滚粗
- Codeforces Round #309 (Div. 1)
A. Kyoya and Colored Balls 大意: 给定$k$种颜色的球, 第$i$种颜色有$c_i$个, 一个合法的排列方案满足最后一个第$i$种球的下一个球为第$i+1$种球, 求合法方 ...
- Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Palindrome Permutation II 回文全排列之二
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...
- [LeetCode] Palindrome Permutation 回文全排列
Given a string, determine if a permutation of the string could form a palindrome. For example," ...
随机推荐
- 字符串转换为整数”123“->123
字符串转换为整数"123"->123 题目描写叙述: 输入一个由数字组成的字符串.把它转换成整数并输出. 比如:输入字符串"123".输出整数123. 给 ...
- 灵动标签的使用方法 ecms通过运行sql获取须要的记录
在某些条件下,我们要求站点的某页上显示指定的信息, 可是这样的指定假设固定去用代码写死的话,对以后的修改将会是大麻烦: 这时候sql语句的优势就凸显出来,利用sql语句仅仅须要改改数字,就能让显示的内 ...
- junit测试时,出现java.lang.IllegalStateException: Failed to load ApplicationContext
课程设计要求进行junit测试,我是在已经做好的ssh项目上做的测试,测试类代码如下 package com.zhang.web.services; import static org.junit.A ...
- Mysql rr和rc隔离
REPEATABLE READ This is the default isolation level for InnoDB. For consistent reads, there is an im ...
- Typings实现智能
在Visual Studio Code中通过Typings实现智能提示功能 前言 我们知道在IDE中代码的智能提示几乎都是标配,虽然一些文本编辑器也有一些简单的提示,但这是通过代码片段提供的.功能 ...
- JavaScript 中的事件类型5(读书笔记思维导图)
Web 浏览器中可能发生的事件有很多类型.如前所述,不同的事件类型具有不同的信息,而“ DOM3级事件”规定了以下几类事件. UI(User Interface,用户界面)事件:当用户与页面上的元素交 ...
- [Cocos2d-x]CCSpriteBatchNode的使用
文档: http://cocos2d.cocoachina.com/document/index/class?url=dd/d95/classcocos2d_1_1_c_c_sprite_batch_ ...
- .Net——使用.net内置处理程序处理自己定义节点Demo
在.net中.由于对不同的节点,都相应着类去对它进行处理,.net里面为了方便.已经内置了一些类供我们使用.使我们在读取配置文件时.不必自己去定义类去处理自己定义的自己定义节点. 以下我们写了这样一个 ...
- Effective C++ -- 构造析构赋值运算
05.了解C++默默编写并调用哪些函数 编译产生的析构函数时non-virtual,除非这个类的基类析构函数为virtual 成员变量中有引用和const成员时,无法自己主动生成copy assign ...
- PHP上传文件超过了最大文件大小限制导致无法上传成功
最近的研究<HeadFirst PHP & MySQL>第一本书5章"使用存储在文件中的数据",难道当一个文件上传应用程序,发生了错误.即,文件不能成功上传.这 ...