免费做一样新

1004 - Monkey Banana Problem 号码塔

1005 - Rooks 排列

1013 - Love Calculator LCS变形

dp[i][j][k]对于第一个字符串i 到jLCS为k的方案数

1068 - Investigation 数位dp

能被K整数且各位数字之和也能被K整除的数 dp[i][j][k] 到第i位每位数字之和的余数为j 当前数字余数为k

1079 - Just another Robbery 01背包

全部钱之和为背包体积 不被抓的概率为物品价值

1032 - Fast Bit Calculations

二进制数中连续两个‘1’出现次数的和 dp[i][j][k] 第i位出现j次’11‘最后一位是否为1

1110 - An Easy LCS LCS

1140 数位dp

两个数之间的全部数中零的个数 dp[i][j][k] 到第i为出现j个有效0是不是全为0(k==true)

1231 - Coin Change (I) 分组背包

对于每种价值为x数量为y的货币 拆成y个x*1,x*2,x*3...x*y的物品 然后做分组背包

1232 - Coin Change (II) 全然背包

1233 - Coin Change (III) 多重背包

1257 - Farthest Nodes in a Tree (II) 树的直径

直接2次BFS求树的直径

1421 - Wavio Sequence 正反2次2分+LIS

1422 - Halloween Costumes 间隔dp

dp[l][r] l至r的需要的最小数目

版权声明:本文博客原创文章。博客,未经同意,不得转载。

Light OJ Dynamic Programming的更多相关文章

  1. 动态规划(Dynamic Programming)算法与LC实例的理解

    动态规划(Dynamic Programming)算法与LC实例的理解 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Le ...

  2. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  3. Dynamic Programming

    We began our study of algorithmic techniques with greedy algorithms, which in some sense form the mo ...

  4. HDU 4223 Dynamic Programming?(最小连续子序列和的绝对值O(NlogN))

    传送门 Description Dynamic Programming, short for DP, is the favorite of iSea. It is a method for solvi ...

  5. hdu 4223 Dynamic Programming?

    Dynamic Programming? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  6. 算法导论学习-Dynamic Programming

    转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...

  7. Dynamic Programming: From novice to advanced

    作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...

  8. HDU-4972 A simple dynamic programming problem

    http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...

  9. Light OJ 1114 Easily Readable 字典树

    题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...

随机推荐

  1. WM_NCHITTEST有21种取值,常用的有HTCAPTION,HTCLIENT,HTBORDER,HTSYSMENU,HTTRANSPARENT,罗列所有VCL里对其使用的情况

    我为了移动一个无标题栏的窗体,使用了WM_NCHITTEST消息,这个消息大概如下: 通常,我们拖动对话框窗口的标题栏来移动窗口,但有时候,我们想通过鼠标在客户区上拖动来移动窗口. 一个容易想到的方案 ...

  2. [置顶] 页面缓存,cache,设置缓存过期时间,OutputCache

    页面缓存 方法一: protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { //缓存有数据 if (Cach ...

  3. vdsm的SSL证书验证过程

    1. Copy the VDSM certificate of the RHEV-H(Red Hat Enterprise Virtualization Hypervisor ) host to th ...

  4. 跨域GET、POST请求

    跨域GET.POST请求的小结 重点:跨域POST大量数据: JQuery:$.ajax/$.getJSON支持jsonp格式的跨域,但是只支持GET方式,暂不支持POST: CORS:w3c关于跨域 ...

  5. ZooKeeper安装与运行

    ZooKeeper安装与运行 首先从官网下载ZooKeeper压缩包,然后解压下载得到的ZooKeeper压缩包,发现有“bin,conf,lib”等目录.“bin目录”中存放有运行脚本:“conf目 ...

  6. STL的一些泛型算法

    源地址:http://blog.csdn.net/byijie/article/details/8142859 从福州大学资料里摘下来的我现在能理解的泛型算法 algorithm min(a,b) 返 ...

  7. Centos 6安装完美搭建mysql、php、apache之旅

    安装apache [root@centos share]# yum -y install httpd Loaded plugins: fastestmirror, refresh-packagekit ...

  8. linux它SQL声明简明教程---WHERE

    我们并不一定必须注意,每次格里面的信息是完全陷入了.在很多情况下,我们需要有选择性地捕捞数据.对于我们的样本.我们可以只抓住一个营业额超过 $1,000 轮廓. 做这个事情,我们就须要用到 WHERE ...

  9. 谈谈android反编译和防止反编译的方法(转)

    谈谈android反编译和防止反编译的方法(转) android基于java的,而java反编译工具很强悍,所以对正常apk应用程序基本上可以做到100%反编译还原. 因此开发人员如果不准备开源自己的 ...

  10. 一个linux常见命令的列表

    这是一个linux常见命令的列表. 那些有• 标记的条目,你可以直接拷贝到终端上而不需要任何修改,因此你最好开一个终端边读边剪切&拷贝. 所有的命令已在Fedora和Ubuntu下做了测试 命 ...