传送门:Pairs Forming LCM

题意:题意:问符合 lcm(i,j)=n (1<=i<=j<=n,1<=n<=10^14) 的 (i,j) 有多少对。

分析:求素数分解式,若xi是第i个素数的幂,那么对于这两个数中有一个的幂一定是xi,另一个随意,那么对于第i的素数的分配方案有(2*xi+1)种(即假设第一个数的幂是xi,另一个数的幂可以为0~xi共xi+1种;另一方面假设第二个数是xi,同理第一个数的幂的选择有xi+1种,这里排除幂都是xi的情况,对于某个素数pi,这两个数的幂的选择方案有2*xi+1种)。那么对于所有素数,共有∏(2*xi+1)种分配方案,由于要排除(a,b),(b,a)这种情况,在之前的计算中除了两个数都是n这种情况都有重复,答案则应该是(∏(2*xi+1)+1)/2

#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 10000000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
inline LL read()
{
char ch=getchar();LL x=,f=;
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
bool vis[N+];
int prime[],tot;
void init()
{
memset(vis,false,sizeof(vis));
tot=;
for(int i=;i<=N;i++)
{
if(!vis[i])
{
prime[tot++]=i;
}
for(int j=;j<tot&&i*prime[j]<=N;j++)
{
vis[i*prime[j]]=true;
if(i%prime[j]==)break;
}
}
} int main()
{
LL n;
int T,cas=;
init();
T=read();
while(T--)
{
n=read();
LL ans=;
for(int i=;i<tot&&(LL)prime[i]*prime[i]<=n;i++)
{
if(n%prime[i]==)
{
LL x=;
while(n%prime[i]==)
{
x++;n/=prime[i];
}
ans*=(x*+);
}
}
if(n>)ans*=;
printf("Case %d: %lld\n",cas++,(ans+)/);
}
}

loj1236(数学)的更多相关文章

  1. 数学思想:为何我们把 x²读作x平方

    要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...

  2. 速算1/Sqrt(x)背后的数学原理

    概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...

  3. MarkDown+LaTex 数学内容编辑样例收集

    $\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...

  4. 深度学习笔记——PCA原理与数学推倒详解

    PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...

  5. Sql Server函数全解<二>数学函数

    阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...

  6. *HDU 2451 数学

    Simple Addition Expression Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  7. 如何解决Maple的应用在数学中

    对任意数学和技术学科的研究员.教师和学生而言,Maple是一个必备的工具.通过Maple,教师将复杂数学问题注入生命,学生的精力集中在概念理解上而不是如何使用工具上,研究员可以开发更复杂的算法或模型. ...

  8. 如何让Maple中的数学引擎进入你的桌面应用程序和网站

    MapleNET数学服务套件将Maple 2015强大的数学引擎引入您的应用程序和网站.使用MapleNET,您可以添加数学计算和可视化功能到网页和桌面程序中,通过互联网/局域网分享“活”的Maple ...

  9. 【原创】开源Math.NET基础数学类库使用(07)常用的数学物理常数

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 1.前 ...

随机推荐

  1. jsp 分页(数据库读取数据)

    <%@ page contentType="text/html; charset=gb2312"%> <%@ page language="java&q ...

  2. protected的一些功能

    java的访问限制有private.protected.public.这里只想进一步认识一下protected. 我对protected有4个疑问: 1,在相同包中,是否可以调用其它类的protect ...

  3. QFrame好像是万能的(可以随意画线,或者图片,放在其它元素之间做点缀,还可OnClick)

    QFrame *fr2=new QFrame(this); fr2->setGeometry(0,140,90,40); fr2->setStyleSheet("backgrou ...

  4. 浅谈数据库技术,磁盘冗余阵列,IP分配,ECC内存,ADO,DAO,JDBC

    整理-----数据库技术,磁盘冗余阵列,IP分配, ECC内存,ADO, DAO,JDBC 1.MySQL MySQL是最受欢迎的开源SQL数据库管理系统,它由 MySQL AB开发.发布和支持.My ...

  5. tar打包过滤某个文件及文件夹

    ip=ip add|grep eth0|grep -i inet|awk '{print $2}'|cut -d '/' -f 1 cd /data tar -zvcf `echo $ip`_`dat ...

  6. Codeforces Round #306 (Div. 2) D.E. 解题报告

    D题:Regular Bridge 乱搞. 构造 这题乱搞一下即可了.构造一个有桥并且每一个点的度数都为k的无向图. 方法非常多.也不好叙述.. 代码例如以下: #include <cstdio ...

  7. Servlet的学习(一)

    初识Servlet Servlet是一门专门用于开发动态web资源的技术,Sun公司在其API中提供了一个Servlet接口(当然,我们不会去直接实现这个接口,而是去继承其实现类会更好),因此,狭义的 ...

  8. 【ASP.NET Web API教程】3.2 通过.NET客户端调用Web API(C#)

    原文:[ASP.NET Web API教程]3.2 通过.NET客户端调用Web API(C#) 注:本文是[ASP.NET Web API系列教程]的一部分,如果您是第一次看本博客文章,请先看前面的 ...

  9. HDU 4893 Wow! Such Sequence!(2014年多校联合 第三场 G)(线段树)

    磨了一天的线段树,不能说完全搞清楚,只能说有一个大概的了解,靠着模板才把这道题A了,只能说太弱~~! 题意: 初始时有一字符串,全为0. 三种操作: 1 k d - add  把d加到第k个数上去2 ...

  10. zabbix 监控jmx 需要--enable-java

    安装Javagateway如果原来已经安装zabbix,只需要再添加以下zabbix-java # tar zxvf zabbix-2.2.0.tar.gz # cd zabbix-2.2.0 # . ...