option=com_onlinejudge&Itemid=8&page=show_problem&category=109&problem=1064&mosmsg=Submission+received+with+ID+13620550">题目:uva :10123 - No Tipping

题目大意:给出l, m, n 分别表示 长度为l 的杠杆, 重量为 m, 有n个物体放在上方。问每次从上面挑选一个物品移除,能否使杠杆继续平衡。这个过程中都能够的话。就输出移除顺序(不唯一) 否则就输出 impossible 。一開始,这个杠杆就不平衡的情况也会是有的。

由于杠杆也是有重量的。

解题思路;

1、这题先前我就不明确什么怎么样的情况下,双支撑点的杠杆不平横。后面看了别人的报告才明确。

首先  我这里有两个支撑点 (1, 2) 左边的为1. 然后1支撑点的左力距为wl1.同理还有wr1, wl2, wr2. 有1个支撑点的力距的值能够比没有支撑点的力距大,由于多个支撑点支撑重量。

所以 这里不平横情况 ( wl1 > wr1 || wr2 > wl2).

2、这题还有时间的问题。直接去dfs是会超时的。所以这里就须要优化。

首先放在两个支撑点中间的物体会使得这个杠杆更加的平衡,因此,这种物体能够最后移除。然后将力距分左右从小到大的排序。

由于要使得移除的不论什么一个过程都须要平衡,所以问题能够转换为把一个一个物体放到一開始为空的杠杆上的状态和顺序,最后逆向输出。物体一个一个放的话,当然是力距小比較不easy发生失衡的现象。

然后左边的物体从例力距小的開始放,假设不能放就换放右边的力距小的物体。

假设两边都不能放就说明是impossible。

注意:这题中间dfs须要考虑细致点,比如怎样推断两边都不能放的情况。假设一边都放完的情况,还有这边放一些去另外一边的情况。

还有两支撑点间的物体尽管dfs不须要考虑,可是他们的力距须要加到总的力距上。

他们的增加会使得杠杆更加平衡,能支撑很多其它的物体。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
#include <math.h>
using namespace std; const int N = 30;
int l, m, n, ans[N][2], path[3], cnt[3];
int flag;
double wl1, wl2, wr1, wr2; struct OB { int w, l;
} obl[N], obr[N], obm[N]; bool cmp (const OB & x,const OB &y) { if (abs (x.l * x.w) < abs (y.l * y.w))
return true;
return false;
} void solve (int dir, int cur, int bo) { if (cur >= n) { flag = 1;
return;
}
if (dir == 0) { for (int i = path[dir]; i < cnt[dir]; i++) {
// printf ("%.3lf %.3lf\n", wl1 + ( -3 - obl[i].l) * obl[i].w, wr1);
if (wl1 + (-3 - obl[i].l) * obl[i].w > wr1) { if (bo) { flag = -1;
return;
}
path[dir] = i;
solve( 2 - dir, cur, bo + 1);
if (flag)
return;
} else { ans[cur][0] = obl[i].l;
ans[cur][1] = obl[i].w;
wl1 += (-3 - obl[i].l) * obl[i].w;
wl2 += (3 - obl[i].l) * obl[i].w;
path[dir] = i + 1;
cur++;
bo = 0; }
}
if (path[2 - dir] <= cnt[2 - dir])
solve (2 - dir, cur, bo);
} else { for (int i = path[dir]; i < cnt[dir]; i++) { if (wr2 + (obr[i].l - 3) * obr[i].w > wl2) { if (bo) {
flag = -1;
return;
}
path[dir] = i;
solve (2 - dir, cur, bo + 1);
if (flag)
return;
} else { ans[cur][0] = obr[i].l;
ans[cur][1] = obr[i].w;
wr1 += (obr[i].l + 3) * obr[i].w;
wr2 += (obr[i].l - 3) * obr[i].w;
path[dir] = i + 1;
cur++;
bo = 0;
}
}
if (path[2 - dir] <= cnt[2 - dir])
solve (2 - dir, cur, bo);
}
if (flag)
return;
} int main () { int p, w, t = 0;
while (scanf ("%d%d%d", &l, &m, &n), l || m || n) { wl1 = wr2 = (l - 3.0) * (l - 3.0) * m / l / 4.0;
wl2 = wr1 = (l + 3.0) * (l + 3.0) * m / l / 4.0;
// printf ("wl1 = %.3lfwr1 = %.3lf\n", wl1, wr1);
memset (cnt, 0, sizeof (cnt));
for (int i = 0; i < n; i++) { scanf ("%d%d", &p, &w);
p = p * 2;
if (p <= 3 && p >= -3){ obm[cnt[1]].w = w;
obm[cnt[1]].l = p;
cnt[1]++;
} else { if (p > 3) { obr[cnt[2]].w = w;
obr[cnt[2]].l = p;
cnt[2]++;
} else { obl[cnt[0]].w = w;
obl[cnt[0]].l = p;
cnt[0]++;
}
}
}
sort (obl, obl + cnt[0], cmp);
sort (obr, obr + cnt[2], cmp);
memset (path, 0, sizeof (path));
for (int i = 0; i < cnt[1]; i++) { wr1 += (obm[i].l + 3) * obm[i].w;
wl2 += (3 - obm[i].l) * obm[i].w;
}
printf ("Case %d:\n", ++t);
flag = 0;
if (wl1 <= wr1 && wr2 <= wl2) { solve (0, cnt[1], 0);
}
if (flag != 1)
printf ("Impossible\n");
else { for (int i = n - 1; i >= cnt[1]; i--)
printf ("%d %d\n", ans[i][0]/2, ans[i][1]);
if (cnt[1] - 1 >= 0)
for (int i = cnt[1] - 1; i >= 0; i--)
printf ("%d %d\n", obm[i].l/2, obm[i].w);
}
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

uva :10123 - No Tipping(dfs + 几何力矩 )的更多相关文章

  1. UVA 10123 No Tipping (物理+贪心+DFS剪枝)

    Problem A - No Tipping As Archimedes famously observed, if you put an object on a lever arm, it will ...

  2. uva 10123 - No Tipping dp 记忆化搜索

    这题的题意是 在双脚天平上有N块东西,依次从上面取走一些,最后使得这个天平保持平衡! 解题: 逆着来依次放入,如果可行那就可以,记得得有木板自身的重量. /********************** ...

  3. UVA - 11853 Paintball(dfs)

    UVA - 11853 思路:dfs,从最上面超过上边界的圆开始搜索,看能不能搜到最下面超过下边界的圆. 代码: #include<bits/stdc++.h> using namespa ...

  4. UVA.548 Tree(二叉树 DFS)

    UVA.548 Tree(二叉树 DFS) 题意分析 给出一棵树的中序遍历和后序遍历,从所有叶子节点中找到一个使得其到根节点的权值最小.若有多个,输出叶子节点本身权值小的那个节点. 先递归建树,然后D ...

  5. UVa 572 油田(DFS求连通块)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. uva 12253 - Simple Encryption(dfs)

    题目链接:uva 12253 - Simple Encryption 题目大意:给定K1.求一个12位的K2,使得KK21=K2%1012 解题思路:按位枚举,不且借用用高速幂取模推断结果. #inc ...

  7. UVA - 1103Ancient Messages(dfs)

    UVA - 1103Ancient Messages In order to understand early civilizations, archaeologists often study te ...

  8. UVa 208 消防车(dfs+剪枝)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVA 11646 - Athletics Track || UVA 11817 - Tunnelling the Earth 几何

    题目大意: 两题几何水题. 1.UVA 11646 - Athletics Track 如图,体育场的跑道一圈400米,其中弯道是两段半径相同的圆弧,已知矩形的长宽比例为a:b,求长和宽的具体数值. ...

随机推荐

  1. 高性能MySql进化论(四):Summary,Cache,Counter表的使用

    在实际的应用中,往往会定期的对一个周期内的系统数据进行统计分析.例如某购物网站定期的统计商品在一个月/年期内的销售情况,如果采用扫描所有相关表的方式在某个时间点进行统计分析, 由于数据量很大,以及表结 ...

  2. Swift - 产生不重复数字的随机数生成器

    在Swift中,可以使用函数类型的参数,也可以使用函数类型的返回值.而作为返回值的函数,还能“捕获”外部的值,并多次使用它.这个特性,常可用来创建各种生成器. 下面通过创建一个“随机数生成器函数”作为 ...

  3. GDI 总结三: CImage类使用

    前言          CImage类是基于GDI+的.可是这里为什么要讲归于GDI? 主要是基于这种考虑: 在GDI+环境中,我们能够直接使用GDI+ ,没多少必要再使用CImage类 可是,假设再 ...

  4. C++学习之路—const用法总结

    (根据<C++程序设计>(谭浩强)整理,整理者:华科小涛,@http://www.cnblogs.com/hust-ghtao转载请注明) C++为什么要引入const?它允许你指定一个语 ...

  5. RGB HSV HLS三种色彩模式转换(C语言实现)

    Android项目上处理图像的代码(注释全部去掉) ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...

  6. Android:Drag and Drop的应用

    最近看了下Drag and Drop部分的原文,觉得很有意思就像自己试着做一下,说实在的原文真的是不好读啊,要感谢那些为我们发表译文的大神们, 真的是不容易,原文中给了例子,但是只有后面零星的代码,真 ...

  7. Wireshark入门与进阶---数据包捕获与保存的最基本流程

    Wireshark入门与进阶系列(一) "君子生非异也.善假于物也"---荀子 本文由CSDN-蚍蜉撼青松 [主页:http://blog.csdn.net/howeverpf]原 ...

  8. [置顶] 强大的JQuery

    JQuery初识 为了简化JS的开发,一些JS库诞生了,JQuery就是其中的一个.JQuery是一个兼容多浏览器的Javascript框架.是轻量级的JS库.jQuery为用户提供了丰富的文档说明, ...

  9. XPSP2 PSDK(还有lostspeed)

    XPSP2 PSDK Full Download with Local Install Use the full download to copy the entire Windows XP SP2 ...

  10. ASP.NET 2.0 页(Page)生命周期概述

    原文:ASP.NET 2.0 页(Page)生命周期概述 引用MSDNASP.NET 页生命周期概述 ASP.NET 页运行时,此页将经历一个生命周期,在生命周期中将执行一系列处理步骤.这些步骤包括初 ...