TF-IDF:Term Frequency-Inverse Document Frequency(词频-逆文档频度):主要用来估计一个词在一个文档中的重要程度。

符号说明:

文档集:D={d1,d2,d3,..,dn}

nw,d:词w在文档d中出现的次数

{wd}:文档d中的所有词的集合

nw:包含词w的文档数目

1、词频 TF的计算公式如下:

2、逆文档频率IDF计算公式:

3、综合1和2,得到TF-IDF:

//w关于d的词频越大,包含w的文档数越少,则词w与文档d的TF-IDF值就越大。TF-IDF值越大,说明词w与文档d的相关性越高。

可以将IDF看做是词频TF的权值,当一个词在越多的文档中出现时,词的权重就越小。比如像“的,是,等”等词基本在每个文档都有出现(这时n=nw,)则其值IDF为0。故而达到了减小其权值的目的。

一些扩展:

1、获取一个文档的关键字的方法:

  1)首先提取出文档中所有的词;

  2)然后将每个词都计算与当前文档的TF-IDF值

  3)再将该值从大到小排序;

  4)最后取出前k个TF-IDF值最大的词即为关键字。

2、从一组文档中获取与关键字w最相关的文档

  计算关键字w与每个文档的TF-IDF值,其值最大的即为最相关的文档。

  

  假如有k个词w1,w2,..,wk个词,计算与这K个词最相关的文档

  

3、计算两个文档之间的相似度

首先将两个文档d1,d2中的词求并集,得到一个新的词集合W,然后将文档d1,d2与词集合W中的每一个词就算相似度,最后将两个文档的相似度计算余弦距离,即得到两个文档的相似度。

具体过程如下:

1)计算文档d1,d2两个文档的词的并集,

  

  2)分别计算W中每个词与d1,d2之间的相似度。得到V1,V2。

  3)使用余弦公式,计算V1,V2之间的余弦距离:

  

  余弦距离越大,则两个文档的相似度越高,反之越低。

参考文献:

[1] http://blog.csdn.net/itplus/article/details/20958185

[2] http://www.cnblogs.com/biyeymyhjob/archive/2012/07/17/2595249.html

TF-IDF算法 笔记的更多相关文章

  1. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  2. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  3. 55.TF/IDF算法

    主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的         一.算法介绍 relevance score算法,简单来说 ...

  4. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  5. tf–idf算法解释及其python代码

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  6. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

  7. Elasticsearch学习之相关度评分TF&IDF

    relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse doc ...

  8. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  9. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

  10. 文本分类学习(三) 特征权重(TF/IDF)和特征提取

    上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...

随机推荐

  1. Struts2语法--Ognl

    OGNL: Object Graph Navigation Language index.jsp: <body> 访问属性 <a href="<%=contextPa ...

  2. HTTP 中 POST和GET的区别

    1.传送数据的方式不一样 get是将数据队列添加到URL中提交,用户可以看到(对URL反编码就行) post是将数据队列放到HTTP的报文的报头中提交,用户看不到所提交的数据: 2.服务器端获取变量的 ...

  3. HDU 2546 饭卡 01背包变形

    题目大意:中文题就不多说了 题目思路:由题意可知,只要高于5元,就可以随便刷,那我们就把最贵的留在最后刷.但是如果低于5元就什么也不能刷(哪怕你要买的物品价格不足五元),所以我们可以先求出(n-5)元 ...

  4. shell与if相关参数

    [ -a FILE ] 如果 FILE 存在则为真. [ -b FILE ] 如果 FILE 存在且是一个块特殊文件则为真. [ -c FILE ] 如果 FILE 存在且是一个字特殊文件则为真. [ ...

  5. HDU 1260 Tickets(基础dp)

    一开始我对这个题的题意理解有问题,居然超时了,我以为是区间dp,没想到是个水dp,我泪奔了.... #include<stdio.h> #include<string.h> # ...

  6. OCR图片识别引擎

    OCR引擎 OCR(Optical Character Recognition)是指使用扫描仪或数码相机对文本资料进行扫描成图像文件,然后对图像文件进行分析处理,自动识别获取文字信息及版面信息的软件. ...

  7. c# 添加了按钮双击事件后,再删除掉代码会提示错误

    有两种方法:.清空属性窗口中的双击事件(doubleclick )右边的内容: .单击“发生错误”提示窗口的“否”后,再双击错误列表里的错误项,此时编辑窗口跳转为xx.Designer.cs,然后注释 ...

  8. PHP :Call to undefined function mysql_connect()

    今天配置apache ,php,mysql 的时候,一直报(Call to undefined function mysql_connect()),PHP一直连接不上数据库,从网上查,答案也都是千篇一 ...

  9. sqlite manager

    http://www.isummation.com/blog/how-to-use-sqlite-manager-extension-in-firefox/ 工具条上右键选定制

  10. [算法] avl树实现

    大二的时候数据结构课死活没看懂的一个东东,看了2小时,敲了2小时,调了2小时... 平衡树某一节点的左右子树高度相差大于1的时候即需要调整,调整可分为四中情况 ll,rr,lr,rl其中lr,rl是由 ...