Spark大师之路:广播变量(Broadcast)源代码分析
概述
近期工作上忙死了……广播变量这一块事实上早就看过了,一直没有贴出来。
本文基于Spark 1.0源代码分析,主要探讨广播变量的初始化、创建、读取以及清除。
类关系
BroadcastManager类中包括一个BroadcastFactory对象的引用。大部分操作通过调用BroadcastFactory中的方法来实现。
BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory、HttpBroadcastFactory。这两个子类实现了对HttpBroadcast、TorrentBroadcast的封装。而后面两个又同一时候集成了Broadcast抽象类。
图……就不画了
BroadcastManager的初始化
SparkContext初始化时会创建SparkEnv对象env,这个过程中会调用BroadcastManager的构造方法返回一个对象作为env的成员变量存在:
val broadcastManager = new BroadcastManager(isDriver, conf, securityManager)
构造BroadcastManager对象时会调用initialize方法,主要依据配置初始化broadcastFactory成员变量。并调用其initialize方法。
val broadcastFactoryClass =
conf.get("spark.broadcast.factory", "org.apache.spark.broadcast.HttpBroadcastFactory") broadcastFactory =
Class.forName(broadcastFactoryClass).newInstance.asInstanceOf[BroadcastFactory] // Initialize appropriate BroadcastFactory and BroadcastObject
broadcastFactory.initialize(isDriver, conf, securityManager)
两个工厂类的initialize方法都是对其对应实体类的initialize方法的调用。以下分开两个类来看。
HttpBroadcast的initialize方法
def initialize(isDriver: Boolean, conf: SparkConf, securityMgr: SecurityManager) {
synchronized {
if (!initialized) {
bufferSize = conf.getInt("spark.buffer.size", 65536)
compress = conf.getBoolean("spark.broadcast.compress", true)
securityManager = securityMgr
if (isDriver) {
createServer(conf)
conf.set("spark.httpBroadcast.uri", serverUri)
}
serverUri = conf.get("spark.httpBroadcast.uri")
cleaner = new MetadataCleaner(MetadataCleanerType.HTTP_BROADCAST, cleanup, conf)
compressionCodec = CompressionCodec.createCodec(conf)
initialized = true
}
}
}
除了一些变量的初始化外,主要做两件事情。一是createServer(仅仅有在Driver端会做),其次是创建一个MetadataCleaner对象。
createServer
private def createServer(conf: SparkConf) {
broadcastDir = Utils.createTempDir(Utils.getLocalDir(conf))
server = new HttpServer(broadcastDir, securityManager)
server.start()
serverUri = server.uri
logInfo("Broadcast server started at " + serverUri)
}
首先创建一个存放广播变量的文件夹,默认是
conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")).split(',')(0)
然后初始化一个HttpServer对象并启动(封装了jetty),启动过程中包含载入资源文件,起port和线程用来监控请求等。这部分的细节在org.apache.spark.HttpServer类中。此处不做展开。
创建MetadataCleaner对象
一个MetadataCleaner对象包装了一个定时计划Timer,每隔一段时间运行一个回调函数,此处传入的回调函数为cleanup:
private def cleanup(cleanupTime: Long) {
val iterator = files.internalMap.entrySet().iterator()
while(iterator.hasNext) {
val entry = iterator.next()
val (file, time) = (entry.getKey, entry.getValue)
if (time < cleanupTime) {
iterator.remove()
deleteBroadcastFile(file)
}
}
}
即清楚存在吵过一定时长的broadcast文件。在时长未设定(默认情况)时。不清除:
if (delaySeconds > 0) {
logDebug(
"Starting metadata cleaner for " + name + " with delay of " + delaySeconds + " seconds " +
"and period of " + periodSeconds + " secs")
timer.schedule(task, periodSeconds * 1000, periodSeconds * 1000)
}
TorrentBroadcast的initialize方法
def initialize(_isDriver: Boolean, conf: SparkConf) {
TorrentBroadcast.conf = conf // TODO: we might have to fix it in tests
synchronized {
if (!initialized) {
initialized = true
}
}
}
Torrent在此处没做什么,这也能够看出和Http的差别,Torrent的处理方式就是p2p。去中心化。
而Http是中心化服务,须要启动服务来接受请求。
创建broadcast变量
调用SparkContext中的 def broadcast[T: ClassTag](value: T): Broadcast[T]方法来初始化一个广播变量,实现例如以下:
def broadcast[T: ClassTag](value: T): Broadcast[T] = {
val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
cleaner.foreach(_.registerBroadcastForCleanup(bc))
bc
}
即调用broadcastManager的newBroadcast方法:
def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean) = {
broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement())
}
再调用工厂类的newBroadcast方法,此处返回的是一个Broadcast对象。
HttpBroadcastFactory的newBroadcast
def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) =
new HttpBroadcast[T](value_, isLocal, id)
即创建一个新的HttpBroadcast对象并返回。
构造对象时主要做两件事情:
HttpBroadcast.synchronized {
SparkEnv.get.blockManager.putSingle(
blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
} if (!isLocal) {
HttpBroadcast.write(id, value_)
}
1.将变量id和值放入blockManager。但并不通知master
2.调用伴生对象的write方法
def write(id: Long, value: Any) {
val file = getFile(id)
val out: OutputStream = {
if (compress) {
compressionCodec.compressedOutputStream(new FileOutputStream(file))
} else {
new BufferedOutputStream(new FileOutputStream(file), bufferSize)
}
}
val ser = SparkEnv.get.serializer.newInstance()
val serOut = ser.serializeStream(out)
serOut.writeObject(value)
serOut.close()
files += file
}
write方法将对象值依照指定的压缩、序列化写入指定的文件。
这个文件所在的文件夹即是HttpServer的资源文件夹。文件名称和id的相应关系为:
case class BroadcastBlockId(broadcastId: Long, field: String = "") extends BlockId {
def name = "broadcast_" + broadcastId + (if (field == "") "" else "_" + field)
}
TorrentBroadcastFactory的newBroadcast方法
def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) =
new TorrentBroadcast[T](value_, isLocal, id)
相同是创建一个TorrentBroadcast对象,并返回。
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.putSingle(
broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
} if (!isLocal) {
sendBroadcast()
}
做两件事情,第一步和Http一样。第二步:
def sendBroadcast() {
val tInfo = TorrentBroadcast.blockifyObject(value_)
totalBlocks = tInfo.totalBlocks
totalBytes = tInfo.totalBytes
hasBlocks = tInfo.totalBlocks // Store meta-info
val metaId = BroadcastBlockId(id, "meta")
val metaInfo = TorrentInfo(null, totalBlocks, totalBytes)
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.putSingle(
metaId, metaInfo, StorageLevel.MEMORY_AND_DISK, tellMaster = true)
} // Store individual pieces
for (i <- 0 until totalBlocks) {
val pieceId = BroadcastBlockId(id, "piece" + i)
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.putSingle(
pieceId, tInfo.arrayOfBlocks(i), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
}
}
}
能够看出。先将元数据信息缓存到blockManager,再将块信息缓存过去。
开头能够看到有一个分块动作,是调用伴生对象的blockifyObject方法:
def blockifyObject[T](obj: T): TorrentInfo
此方法将对象obj分块(默认块大小为4M),返回一个TorrentInfo对象。第一个參数为一个TorrentBlock对象(包括blockID和block字节数组)、块数量以及obj的字节流总长度。
元数据信息中的blockId为广播变量id+后缀,value为总块数和总字节数。
数据信息是分块缓存。每块的id为广播变量id加后缀及块变好,数据位一个TorrentBlock对象
读取广播变量的值
通过调用bc.value来取得广播变量的值,其主要实如今反序列化方法readObject中
HttpBroadcast的反序列化
HttpBroadcast.synchronized {
SparkEnv.get.blockManager.getSingle(blockId) match {
case Some(x) => value_ = x.asInstanceOf[T]
case None => {
logInfo("Started reading broadcast variable " + id)
val start = System.nanoTime
value_ = HttpBroadcast.read[T](id)
/*
* We cache broadcast data in the BlockManager so that subsequent tasks using it
* do not need to re-fetch. This data is only used locally and no other node
* needs to fetch this block, so we don't notify the master.
*/
SparkEnv.get.blockManager.putSingle(
blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
val time = (System.nanoTime - start) / 1e9
logInfo("Reading broadcast variable " + id + " took " + time + " s")
}
}
}
首先查看blockManager中是否已有,如有则直接取值。否则调用伴生对象的read方法进行读取:
def read[T: ClassTag](id: Long): T = {
logDebug("broadcast read server: " + serverUri + " id: broadcast-" + id)
val url = serverUri + "/" + BroadcastBlockId(id).name var uc: URLConnection = null
if (securityManager.isAuthenticationEnabled()) {
logDebug("broadcast security enabled")
val newuri = Utils.constructURIForAuthentication(new URI(url), securityManager)
uc = newuri.toURL.openConnection()
uc.setAllowUserInteraction(false)
} else {
logDebug("broadcast not using security")
uc = new URL(url).openConnection()
} val in = {
uc.setReadTimeout(httpReadTimeout)
val inputStream = uc.getInputStream
if (compress) {
compressionCodec.compressedInputStream(inputStream)
} else {
new BufferedInputStream(inputStream, bufferSize)
}
}
val ser = SparkEnv.get.serializer.newInstance()
val serIn = ser.deserializeStream(in)
val obj = serIn.readObject[T]()
serIn.close()
obj
}
使用serverUri和block id相应的文件名称直接开启一个HttpConnection将中心服务器上相应的数据取过来,使用配置的压缩和序列化机制进行解压和反序列化。
这里能够看到,全部须要用到广播变量值的executor都须要去driver上pull广播变量的内容。
取到值后,缓存到blockManager中,以便下次使用。
TorrentBroadcast的反序列化
private def readObject(in: ObjectInputStream) {
in.defaultReadObject()
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.getSingle(broadcastId) match {
case Some(x) =>
value_ = x.asInstanceOf[T] case None =>
val start = System.nanoTime
logInfo("Started reading broadcast variable " + id) // Initialize @transient variables that will receive garbage values from the master.
resetWorkerVariables() if (receiveBroadcast()) {
value_ = TorrentBroadcast.unBlockifyObject[T](arrayOfBlocks, totalBytes, totalBlocks) /* Store the merged copy in cache so that the next worker doesn't need to rebuild it.
* This creates a trade-off between memory usage and latency. Storing copy doubles
* the memory footprint; not storing doubles deserialization cost. Also,
* this does not need to be reported to BlockManagerMaster since other executors
* does not need to access this block (they only need to fetch the chunks,
* which are reported).
*/
SparkEnv.get.blockManager.putSingle(
broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false) // Remove arrayOfBlocks from memory once value_ is on local cache
resetWorkerVariables()
} else {
logError("Reading broadcast variable " + id + " failed")
} val time = (System.nanoTime - start) / 1e9
logInfo("Reading broadcast variable " + id + " took " + time + " s")
}
}
}
和Http一样。都是先查看blockManager中是否已经缓存,若没有,则调用receiveBroadcast方法:
def receiveBroadcast(): Boolean = {
// Receive meta-info about the size of broadcast data,
// the number of chunks it is divided into, etc.
val metaId = BroadcastBlockId(id, "meta")
var attemptId = 10
while (attemptId > 0 && totalBlocks == -1) {
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.getSingle(metaId) match {
case Some(x) =>
val tInfo = x.asInstanceOf[TorrentInfo]
totalBlocks = tInfo.totalBlocks
totalBytes = tInfo.totalBytes
arrayOfBlocks = new Array[TorrentBlock](totalBlocks)
hasBlocks = 0 case None =>
Thread.sleep(500)
}
}
attemptId -= 1
}
if (totalBlocks == -1) {
return false
} /*
* Fetch actual chunks of data. Note that all these chunks are stored in
* the BlockManager and reported to the master, so that other executors
* can find out and pull the chunks from this executor.
*/
val recvOrder = new Random().shuffle(Array.iterate(0, totalBlocks)(_ + 1).toList)
for (pid <- recvOrder) {
val pieceId = BroadcastBlockId(id, "piece" + pid)
TorrentBroadcast.synchronized {
SparkEnv.get.blockManager.getSingle(pieceId) match {
case Some(x) =>
arrayOfBlocks(pid) = x.asInstanceOf[TorrentBlock]
hasBlocks += 1
SparkEnv.get.blockManager.putSingle(
pieceId, arrayOfBlocks(pid), StorageLevel.MEMORY_AND_DISK, tellMaster = true) case None =>
throw new SparkException("Failed to get " + pieceId + " of " + broadcastId)
}
}
} hasBlocks == totalBlocks
}
和写数据一样,相同是分成两个部分,首先取元数据信息,再依据元数据信息读取实际的block信息。注意这里都是从blockManager中读取的,这里贴出blockManager.getSingle的分析。
调用栈中最后到BlockManager.doGetRemote方法。中间有一条语句:
val locations = Random.shuffle(master.getLocations(blockId))
即将存有这个block的节点信息随机打乱,然后使用:
val data = BlockManagerWorker.syncGetBlock(
GetBlock(blockId), ConnectionManagerId(loc.host, loc.port))
来获取。
从这里能够看出,Torrent方法首先将广播变量数据分块,并存到BlockManager中;每一个节点须要读取广播变量时。是分块读取。对每一块都读取其位置信息。然后随机选一个存有此块数据的节点进行get。每一个节点读取后会将包括的快信息报告给BlockManagerMaster。这样本地节点也成为了这个广播网络中的一个peer。
与Http方式形成鲜明对照,这是一个去中心化的网络。仅仅须要保持一个tracker就可以,这就是p2p的思想。
广播变量的清除
广播变量被创建时。紧接着有这样一句代码:
cleaner.foreach(_.registerBroadcastForCleanup(bc))
cleaner是一个ContextCleaner对象,会将刚刚创建的广播变量注冊到当中。调用栈为:
def registerBroadcastForCleanup[T](broadcast: Broadcast[T]) {
registerForCleanup(broadcast, CleanBroadcast(broadcast.id))
}
private def registerForCleanup(objectForCleanup: AnyRef, task: CleanupTask) {
referenceBuffer += new CleanupTaskWeakReference(task, objectForCleanup, referenceQueue)
}
等出现广播变量被弱引用时(关于弱引用,能够參考:http://blog.csdn.net/lyfi01/article/details/6415726)。则会运行
cleaner.foreach(_.start())
start方法中会调用keepCleaning方法。会遍历注冊的清理任务(包含RDD、shuffle和broadcast),依次进行清理:
private def keepCleaning(): Unit = Utils.logUncaughtExceptions {
while (!stopped) {
try {
val reference = Option(referenceQueue.remove(ContextCleaner.REF_QUEUE_POLL_TIMEOUT))
.map(_.asInstanceOf[CleanupTaskWeakReference])
reference.map(_.task).foreach { task =>
logDebug("Got cleaning task " + task)
referenceBuffer -= reference.get
task match {
case CleanRDD(rddId) =>
doCleanupRDD(rddId, blocking = blockOnCleanupTasks)
case CleanShuffle(shuffleId) =>
doCleanupShuffle(shuffleId, blocking = blockOnCleanupTasks)
case CleanBroadcast(broadcastId) =>
doCleanupBroadcast(broadcastId, blocking = blockOnCleanupTasks)
}
}
} catch {
case e: Exception => logError("Error in cleaning thread", e)
}
}
}
doCleanupBroadcast调用下面语句:
broadcastManager.unbroadcast(broadcastId, true, blocking)
然后是:
def unbroadcast(id: Long, removeFromDriver: Boolean, blocking: Boolean) {
broadcastFactory.unbroadcast(id, removeFromDriver, blocking)
}
每一个工厂类调用其相应实体类的伴生对象的unbroadcast方法。
HttpBroadcast中的变量清除
def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized {
SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking)
if (removeFromDriver) {
val file = getFile(id)
files.remove(file)
deleteBroadcastFile(file)
}
}
1是删除blockManager中的缓存。2是删除本地持久化的文件
TorrentBroadcast中的变量清除
def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized {
SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking)
}
小结
Broadcast能够使用在executor端多次使用某个数据的场景(比方说字典),Http和Torrent两种方式相应传统的CS訪问方式和P2P訪问方式。当广播变量较大或者使用较频繁时。採用后者能够降低driver端的压力。
BlockManager在此处充当P2P中的tracker角色。没有展开描写叙述,兴许会开专题讲这个部分。
声明:本文为原创,禁止用于不论什么商业目的。转载请注明出处:http://blog.csdn.net/asongoficeandfire/article/details/37584643
Spark大师之路:广播变量(Broadcast)源代码分析的更多相关文章
- Spark学习之路 (四)Spark的广播变量和累加器
一.概述 在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本.这些变量会被复制到每台机器上 ...
- Spark学习之路 (四)Spark的广播变量和累加器[转]
概述 在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本.这些变量会被复制到每台机器上,并 ...
- Spark 广播变量BroadCast
一. 广播变量 广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量.广播变量可被用于有效地给每个节点一个大输入数据集的副本.Spark还尝试使用高效地广播算法来分发变量,进而 ...
- spark中的广播变量broadcast
Spark中的Broadcast处理 首先先来看一看broadcast的使用代码: val values = List[Int](1,2,3) val broadcastValues = sparkC ...
- 【Spark篇】---Spark中广播变量和累加器
一.前述 Spark中因为算子中的真正逻辑是发送到Executor中去运行的,所以当Executor中需要引用外部变量时,需要使用广播变量. 累机器相当于统筹大变量,常用于计数,统计. 二.具体原理 ...
- Spark共享变量(广播变量、累加器)
转载自:https://blog.csdn.net/Android_xue/article/details/79780463 Spark两种共享变量:广播变量(broadcast variable)与 ...
- spark的广播变量
直接上代码:包含了,map,filter,persist,mapPartitions等函数 String master = "spark://192.168.2.279:7077" ...
- Spark2.0基于广播变量broadcast实现实时数据按天统计
package com.gm.hive.SparkHive; import java.text.SimpleDateFormat; import java.util.Arrays; import ja ...
- Spark的广播变量模块
有人问我,如果让我设计广播变量该怎么设计,我想了想说,为啥不用zookeeper呢? 对啊,为啥不用zookeeper,也许spark的最初设计哲学就是尽量不使用别的组件,他有自己分布式内存文件系统, ...
- 初识Flink广播变量broadcast
Broadcast 广播变量:可以理解为是一个公共的共享变量,我们可以把一个dataset 或者不变的缓存对象(例如map list集合对象等)数据集广播出去,然后不同的任务在节点上都能够获取到,并在 ...
随机推荐
- EF 分离实体
具体步骤: 新建测试项目:如图 其中Respository和Model层均为类库项目, 1.在Respository层添加ADO.NET实体数据模型, 2.复制Model.tt文件到Model层,这是 ...
- HDU 4380 Farmer Greedy 计算几何+bitset
枚举直线,对于直线的某个点在直线的左端还是右端,能够状压出一个数.用bitset记录. 然后三角形就是3个bitset&一下 #include <cstdio> #include ...
- jquey :eq(1)
$("#div_Goods .datagrid-row .numberbox:eq(1)") $("#div_Goods .datagrid-row .numberbox ...
- Java 并发专题 : Executor详细介绍 打造基于Executor的Web服务器
转载标明出处:http://blog.csdn.net/lmj623565791/article/details/26938985 继续并发,貌似并发的文章很少有人看啊~哈~ 今天准备详细介绍java ...
- sql语句中单引号嵌套问题
在sql语句中,我们难免会用到单引号嵌套的时候,但是直接嵌套肯定是不行的,java中用反斜杠做转义符也是不行的,在sql中是用单引号来做转义符的. 比如下面例子是存储过程里查询时的语句示例 exec ...
- iSwifting如何发送照片社区
登录iSwifting社区 1,首先点击"帖子": 2,点击"照片": 3.点击"选择文件上传" 4,上传后的照片: 5,点击上传的照片: ...
- 传智播客成都校园php纪律指控
继传智播客成都校区php第一期班圆满开班,说明php的火爆一点儿也不亚于java! 经传智播客商讨决定,传智播客成都校区php学科收费标准例如以下: 採用下面不论什么一种方式都能够享受优惠价: 一.自 ...
- iOS结合导航控制器和标签栏控制器
<span style="font-family: Arial, Helvetica, sans-serif;"></span><pre name=& ...
- 查看.a架构文件
苹果公司现在要求所有新提交的评论app,我们必须支持64位架构.而我们的在线项目编制,操作员做了一堆SDK在需要访问,我们发现,在这个过程中,有些SDK的.a文件进入后,链接错误,如提示 Undefi ...
- Python 保存爬行动物捕捉网页
选址的桌面壁纸网站汽车主题: 下面的两个print打开调试期间 #print tag #print attrs #!/usr/bin/env python import re import urlli ...