题意:

一幅无向图  将尽量多的无向边定向成有向边  使得图强连通  无向图保证是连通的且没有重边

思路:

桥必须是双向的  因此先求边双连通分量  并将桥保存在ans中

每一个双连通分量内的边一定都能够变成有向边(毕竟是圈组成的图) 边的定向方式分两种:

1、对于树枝边u->v  假设low[v]>dfn[u]说明v回不到u上面去  所以ans应该是v->u的边  否则是u->v

2、对于逆向边  应该全在ans中  由于对于dfs树而言  这样的边利于low减小

代码:

#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<vector>
using namespace std;
typedef long long LL;
#define N 1010
#define M 2000010
#define inf 2147483647 int n,m,t=1,tot,idx;
int head[N],dfn[N],low[N];
struct edge
{
int u,v,next;
bool vis,cut,left;
}ed[M]; void add(int u,int v)
{
ed[tot].u=u;
ed[tot].v=v;
ed[tot].next=head[u];
ed[tot].vis=ed[tot].cut=ed[tot].left=false;
head[u]=tot++;
} void tarjan(int u)
{
int i,v;
dfn[u]=low[u]=++idx;
for(i=head[u];~i;i=ed[i].next)
{
v=ed[i].v;
if(ed[i].vis) continue;
ed[i].vis=ed[i^1].vis=true;
if(dfn[v]==-1)
{
tarjan(v);
low[u]=min(low[u],low[v]);
if(dfn[u]<low[v])
{
ed[i].cut=ed[i^1].cut=true;
ed[i].left=ed[i^1].left=true;
}
}
else low[u]=min(low[u],dfn[v]);
}
} void dfs(int u)
{
int i,v;
dfn[u]=low[u]=++idx;
for(i=head[u];~i;i=ed[i].next)
{
if(ed[i].cut) continue;
v=ed[i].v;
if(dfn[v]==-1)
{
ed[i].vis=ed[i^1].vis=true;
dfs(v);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u]) ed[i^1].left=true;
else ed[i].left=true;
}
else
{
low[u]=min(low[u],dfn[v]);
if(!ed[i].vis) ed[i].left=true;
ed[i].vis=ed[i^1].vis=true;
}
}
} void solve()
{
int i;
memset(dfn,-1,sizeof(dfn));
idx=0;
tarjan(1);
memset(dfn,-1,sizeof(dfn));
idx=0;
for(i=0;i<tot;i++) ed[i].vis=false;
for(i=1;i<=n;i++)
{
if(dfn[i]==-1) dfs(i);
}
} int main()
{
int i,u,v;
while(~scanf("%d%d",&n,&m))
{
if(!n&&!m) break;
tot=0;
memset(head,-1,sizeof(head));
for(i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
solve();
printf("%d\n\n",t++);
for(i=0;i<tot;i++)
{
if(ed[i].left) printf("%d %d\n",ed[i].u,ed[i].v);
}
printf("#\n");
}
return 0;
}

POJ 1515 Street Directions的更多相关文章

  1. POJ 1515 Street Directions --一道连通题的双连通和强连通两种解法

    题意:将一个无向图中的双向边改成单向边使图强连通,问最多能改多少条边,输出改造后的图. 分析: 1.双连通做法: 双连通图转强连通图的算法:对双连通图进行dfs,在搜索的过程中就能按照搜索的方向给所有 ...

  2. POJ 1515 Street Directions (边双连通)

    <题目链接> 题目大意: 有m条无向边,现在把一些边改成有向边,使得所有的点还可以互相到达.输出改变后的图的所有边(无向边当成双向的有向边输出). 解题分析: 因为修改边后,所有点仍然需要 ...

  3. UVA 610 - Street Directions(割边)

    UVA 610 - Street Directions option=com_onlinejudge&Itemid=8&page=show_problem&category=5 ...

  4. UVALive 5412 Street Directions

    Street Directions Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVALive. ...

  5. POJ 1320 Street Numbers 【佩尔方程】

    任意门:http://poj.org/problem?id=1320 Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  6. poj 1515+poj 1438(边双连通)

    题目链接:http://poj.org/problem?id=1515 思路:题目的意思是说将一个无向图改成有向图,使其成为强连通,输出所有的边.我们可以求无向图的边双连通分量,对于同一个双连通分量, ...

  7. POJ 1320 Street Numbers 解佩尔方程

    传送门 Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2529   Accepted: 140 ...

  8. POJ 1320 Street Numbers(佩尔方程)

    Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3078   Accepted: 1725 De ...

  9. POJ 1320 Street Numbers Pell方程

    http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b  要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...

随机推荐

  1. struts2官方演示程序总结struts2-blank

    struts-2.2.3.1-all\struts-2.2.3.1\apps\struts2-blank总结 1.Html可以访问action  ,如下:    < head  >     ...

  2. 每天一个JavaScript实例-推断图片是否载入完毕

    <!doctype html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  3. qt事件传递过程和处理

    处理监控系统的时候遇到问题,在MainWidget中创建多个子Widget的时候,原意是想鼠标点击先让MainWidget截获处理后再分派给子Widget去处理,但调试后发现如果子Widget重新实现 ...

  4. android studio 9.png 报错

    Eclipse里能正常运行,但是导入到Android Studio里就报如下的错误 百度了下,说有两种解决办法一种是改后缀名,还有一种是重新在Android Studio里画一下点9图片.但是这个项目 ...

  5. cURL安装和使用笔记

    0.前言     cURL是一个利用URL语法在命令行下工作的文件传输工具.它支持文件上传和下载,所以是综合传输工具,但习惯称cURL为下载工具.cURL还包含了用于程序开发的libcurl.cURL ...

  6. RIO包 健壮的I/O函数代码

    下面是关于 #include <stdio.h> #include <string.h> #include <errno.h> #include <sys/t ...

  7. System单元对所有与COM相关的声明就这么多,需要倒背如流

    是首先是VM表,但是和COM相关的函数地址都废弃了,这几个VM函数具体放在哪里,还得在研究: { Virtual method table entries } vmtSelfPtr = -; vmtI ...

  8. [Android学习笔记]子线程更新UI线程方法之Handler

    关于此笔记 不讨论: 1.不讨论Handler实现细节 2.不讨论android线程派发细节 讨论: 子线程如何简单的使用Handler更新UI 问题: android开发时,如何在子线程更新UI? ...

  9. junit测试时,出现java.lang.IllegalStateException: Failed to load ApplicationContext

    课程设计要求进行junit测试,我是在已经做好的ssh项目上做的测试,测试类代码如下 package com.zhang.web.services; import static org.junit.A ...

  10. hdu 1217 利用flord算法求 有环图 2点之间最大值

    Arbitrage                                                      T ime Limit: 2000/1000 MS (Java/Other ...