聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。

本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。

1. GMM模型:

每一个 GMM 由 K 个 Gaussian 分布组成。每一个 Gaussian 称为一个“Component”,这些 Component 线性加成在一起就组成了 GMM 的概率密度函数:

依据上面的式子,如果我们要从 GMM 的分布中随机地取一个点的话,实际上能够分为两步:首先随机地在这 K个Gaussian Component 之中选一个,每一个 Component 被选中的概率实际上就是它的系数 pi(k) ,选中了 Component 之后,再单独地考虑从这个 Component 的分布中选取一个点就能够了──这里已经回到了普通的 Gaussian 分布,转化为了已知的问题。

那么怎样用 GMM 来做 clustering 呢?事实上非常简单,如今我们有了数据,假定它们是由 GMM 生成出来的,那么我们仅仅要依据数据推出 GMM 的概率分布来就能够了,然后 GMM 的 K 个 Component 实际上就相应了 K 个 cluster 了。

依据数据来推算概率密度通常被称作 density estimation ,特别地,当我们在已知(或假定)了概率密度函数的形式。而要预计当中的參数的过程被称作“參数预计”。

2. 參数与似然函数:

如今如果我们有 N 个数据点,并如果它们服从某个分布(记作 p(x) ),如今要确定里面的一些參数的值,比如,在 GMM 中,我们就须要确定 影响因子pi(k)、各类均值pMiu(k) 和 各类协方差pSigma(k) 这些參数。 我们的想法是,找到这样一组參数。它所确定的概率分布生成这些给定的数据点的概率最大,而这个概率实际上就等于  ,我们把这个乘积称作似然函数 (Likelihood Function)。通常单个点的概率都非常小,很多非常小的数字相乘起来在计算机里非常easy造成浮点数下溢,因此我们一般会对其取对数,把乘积变成加和 。得到 log-likelihood function 。接下来我们仅仅要将这个函数最大化(通常的做法是求导并令导数等于零。然后解方程),亦即找到这样一组參数值,它让似然函数取得最大值。我们就觉得这是最合适的參数,这样就完毕了參数预计的过程。

以下让我们来看一看 GMM 的 log-likelihood function :

因为在对数函数里面又有加和。我们没法直接用求导解方程的办法直接求得最大值。为了解决问题。我们採取之前从 GMM 中随机选点的办法:分成两步,实际上也就相似于K-means 的两步。

3. 算法流程:

1.  预计数据由每一个 Component 生成的概率(并非每一个 Component 被选中的概率):对于每一个数据  来说。它由第  个 Component 生成的概率为

当中N(xi | μk,Σk)就是后验概率

2. 通过极大似然预计能够通过求到令參数=0得到參数pMiu。pSigma的值。

具体请见这篇文章第三部分。

当中  ,而且  也顺理成章地能够预计为  。

3. 反复迭代前面两步。直到似然函数的值收敛为止。

4. matlab实现GMM聚类代码与解释:


说明:fea为训练样本数据,gnd为样本标号。算法中的思想和上面写的一模一样,在最后的推断accuracy方面,因为聚类和分类不同,仅仅是得到一些 cluster 。而并不知道这些 cluster 应该被打上什么标签,或者说。

因为我们的目的是衡量聚类算法的 performance 。因此直接假定这一步能实现最优的相应关系,将每一个 cluster 相应到一类上去。一种办法是枚举全部可能的情况并选出最优解。另外,对于这种问题,我们还能够用 Hungarian algorithm 来求解。具体的Hungarian代码我放在了资源里,调用方法已经写在以下函数中了。

注意:资源里我放的是Kmeans的代码。大家下载的时候仅仅要用bestMap.m等几个文件就好~


1. gmm.m,最核心的函数,进行模型与參数确定。

function varargout = gmm(X, K_or_centroids)
% ============================================================
% Expectation-Maximization iteration implementation of
% Gaussian Mixture Model.
%
% PX = GMM(X, K_OR_CENTROIDS)
% [PX MODEL] = GMM(X, K_OR_CENTROIDS)
%
% - X: N-by-D data matrix.
% - K_OR_CENTROIDS: either K indicating the number of
% components or a K-by-D matrix indicating the
% choosing of the initial K centroids.
%
% - PX: N-by-K matrix indicating the probability of each
% component generating each point.
% - MODEL: a structure containing the parameters for a GMM:
% MODEL.Miu: a K-by-D matrix.
% MODEL.Sigma: a D-by-D-by-K matrix.
% MODEL.Pi: a 1-by-K vector.
% ============================================================
% @SourceCode Author: Pluskid (http://blog.pluskid.org)
% @Appended by : Sophia_qing (http://blog.csdn.net/abcjennifer) %% Generate Initial Centroids
threshold = 1e-15;
[N, D] = size(X); if isscalar(K_or_centroids) %if K_or_centroid is a 1*1 number
K = K_or_centroids;
Rn_index = randperm(N); %random index N samples
centroids = X(Rn_index(1:K), :); %generate K random centroid
else % K_or_centroid is a initial K centroid
K = size(K_or_centroids, 1);
centroids = K_or_centroids;
end %% initial values
[pMiu pPi pSigma] = init_params(); Lprev = -inf; %上一次聚类的误差 %% EM Algorithm
while true
%% Estimation Step
Px = calc_prob(); % new value for pGamma(N*k), pGamma(i,k) = Xi由第k个Gaussian生成的概率
% 或者说xi中有pGamma(i,k)是由第k个Gaussian生成的
pGamma = Px .* repmat(pPi, N, 1); %分子 = pi(k) * N(xi | pMiu(k), pSigma(k))
pGamma = pGamma ./ repmat(sum(pGamma, 2), 1, K); %分母 = pi(j) * N(xi | pMiu(j), pSigma(j))对全部j求和 %% Maximization Step - through Maximize likelihood Estimation Nk = sum(pGamma, 1); %Nk(1*k) = 第k个高斯生成每一个样本的概率的和,全部Nk的总和为N。 % update pMiu
pMiu = diag(1./Nk) * pGamma' * X; %update pMiu through MLE(通过令导数 = 0得到)
pPi = Nk/N; % update k个 pSigma
for kk = 1:K
Xshift = X-repmat(pMiu(kk, :), N, 1);
pSigma(:, :, kk) = (Xshift' * ...
(diag(pGamma(:, kk)) * Xshift)) / Nk(kk);
end % check for convergence
L = sum(log(Px*pPi'));
if L-Lprev < threshold
break;
end
Lprev = L;
end if nargout == 1
varargout = {Px};
else
model = [];
model.Miu = pMiu;
model.Sigma = pSigma;
model.Pi = pPi;
varargout = {Px, model};
end %% Function Definition function [pMiu pPi pSigma] = init_params()
pMiu = centroids; %k*D, 即k类的中心点
pPi = zeros(1, K); %k类GMM所占权重(influence factor)
pSigma = zeros(D, D, K); %k类GMM的协方差矩阵,每一个是D*D的 % 距离矩阵。计算N*K的矩阵(x-pMiu)^2 = x^2+pMiu^2-2*x*Miu
distmat = repmat(sum(X.*X, 2), 1, K) + ... %x^2, N*1的矩阵replicateK列
repmat(sum(pMiu.*pMiu, 2)', N, 1) - ...%pMiu^2,1*K的矩阵replicateN行
2*X*pMiu';
[~, labels] = min(distmat, [], 2);%Return the minimum from each row for k=1:K
Xk = X(labels == k, :);
pPi(k) = size(Xk, 1)/N;
pSigma(:, :, k) = cov(Xk);
end
end function Px = calc_prob()
%Gaussian posterior probability
%N(x|pMiu,pSigma) = 1/((2pi)^(D/2))*(1/(abs(sigma))^0.5)*exp(-1/2*(x-pMiu)'pSigma^(-1)*(x-pMiu))
Px = zeros(N, K);
for k = 1:K
Xshift = X-repmat(pMiu(k, :), N, 1); %X-pMiu
inv_pSigma = inv(pSigma(:, :, k));
tmp = sum((Xshift*inv_pSigma) .* Xshift, 2);
coef = (2*pi)^(-D/2) * sqrt(det(inv_pSigma));
Px(:, k) = coef * exp(-0.5*tmp);
end
end
end

2. gmm_accuracy.m调用gmm.m,计算准确率:

function [ Accuracy ] = gmm_accuracy( Data_fea, gnd_label, K )
%Calculate the accuracy Clustered by GMM model px = gmm(Data_fea,K);
[~, cls_ind] = max(px,[],1); %cls_ind = cluster label
Accuracy = cal_accuracy(cls_ind, gnd_label); function [acc] = cal_accuracy(gnd,estimate_label)
res = bestMap(gnd,estimate_label);
acc = length(find(gnd == res))/length(gnd);
end end

3. 主函数调用

gmm_acc = gmm_accuracy(fea,gnd,N_classes);

写了本文进行总结后自己非常受益。也希望大家能够好好YM下上面pluskid的gmm.m,不光是算法。当中的矩阵处理代码也写的非常简洁,非常值得学习。

另外看了两份东西非常受益。一个是pluskid大牛的

p=39">漫谈 Clustering (3): Gaussian Mixture Model》。一个是JerryLead的EM算法具体解释,大家有兴趣也能够看一下,写的非常好。

关于Machine Learning很多其它的学习资料与相关讨论将继续更新,敬请关注本博客和新浪微博Sophia_qing

GMM的EM算法的更多相关文章

  1. GMM及EM算法

    GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussia ...

  2. 高斯混合模型GMM与EM算法的Python实现

    GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...

  3. 【机器学习】GMM和EM算法

    机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定 ...

  4. GMM的EM算法实现

    转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral c ...

  5. [转载]GMM的EM算法实现

    在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明 ...

  6. GMM与EM算法

    用EM算法估计GMM模型参数 参考  西瓜书 再看下算法流程

  7. 5. EM算法-高斯混合模型GMM+Lasso

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...

  8. 4. EM算法-高斯混合模型GMM详细代码实现

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM ...

  9. 3. EM算法-高斯混合模型GMM

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...

随机推荐

  1. anroid里面的post请求

    一.需要用到的场景 在jQuery中使用$.post()就可以方便的发起一个post请求,在android程序中有时也要从服务器获取一些数据,就也必须得使用post请求了. 二.需要用到的主要类 在a ...

  2. JQuery 事件及案例

    JQuery事件与JavaScript事件相似,只是把其中的on去掉 1.click,dblclick事件 案例1:点击缩略图换背景 <html xmlns="http://www.w ...

  3. javascript笔记整理(对象的继承顺序、分类)

    Object.prototype.say=function(){ alert("我是顶层的方法"); } children.prototype=new parent(); pare ...

  4. 基于visual Studio2013解决面试题之1204大数组查找

     题目

  5. webform中几个常用的控件

    一,简单控件 1,Lable——标签:在网页中呈现出来的时候会变成span标签 属性:Text——标签上的文字  BackColor,ForeColor——背景色,前景色 Font——字体 Bold- ...

  6. 【linux】linux根文件系统制作

    欢迎转载,转载时请保留作者信息,谢谢. 邮箱:tangzhongp@163.com 博客园地址:http://www.cnblogs.com/embedded-tzp Csdn博客地址:http:// ...

  7. Axure快捷键大全 Axure RP Pro 6.5快捷键

    习惯用Axure快捷键会让你做原型的时候更得心应手.Axure中文网总结了常用的一些快捷键分享给大家 . Axure RP Pro 6.5快捷键大全,如有疏漏,欢迎补充. 基本快捷键:   打开:Ct ...

  8. python - Django: Converting an entire set of a Model's objects into a single dictionary - Stack Overflow

    python - Django: Converting an entire set of a Model's objects into a single dictionary - Stack Over ...

  9. 【Java线程】volatile的适用场景

    http://www.ibm.com/developerworks/cn/java/j-jtp06197.html 把代码块声明为 synchronized,有两个重要后果,通常是指该代码具有 原子性 ...

  10. Unity3D手游-横版ACT游戏完整源代码下载

    说明: 这不是武林.这不是江湖,没有道不完的恩怨,没有斩不断的情仇,更没有理不清的烦恼,这是剑的世界,一代剑魁闯入未知世界,将会为这个世界展开什么样的蓝图.让你来创造它的未来,剑魁道天下,一剑斗烛龙! ...