Hive分区和传统数据库的分区的异同:

分区技术是处理大型数据集经常用到的方法。在Oracle中,分区表中的每个分区是一个独立的segment段对象,有多少个分区,就存在多少个相应的数据库对象。而在Postgresql中分区表其实相当于分别建立了很多小表,其实和Oracle是异曲同工罢了。

在HIVE中的管理表其实就是在数据库目录下的一个和表名称一样的目录,数据文件都存放在该目录下,如果在Hive中查询一张表数据,那就需要遍历该目录下的所有数据文件,如果表的数据非常庞大,那查询性能会很不好。

管理表的分区:

在Hive中的分区表概念和传统数据库的类似,但也有一些不同。在Hive中如果对一个张管理表建立分区,那么将会在数据库的目录下的表目录下再建几层目录,这个根据分区键的个数而定,如果是一个分区键,那么就会多出来一层目录,如果是两个分区键,那么就会相应的多出来两层目录。Hive就是根据目录将Hive表中存放的数据进行了分割成多块。当查询的时候,where条件中遇到 了分区列条件限制,就会在这些目录上进行匹配,如果发现相应的目录,那就只会访问匹配的目录,而不会访问其他的分区目录,这样就大大的减少了数据的访问量。

我现在创建一张管理表emp

DROP TABLE IF EXISTS emp;

CREATE TABLE IF NOT EXISTS emp(
name STRING,
salary FLOAT,
subordinates ARRAY<STRING>,
deductions MAP<STRING,FLOAT>,
address STRUCT<street:STRING,city:STRING,province:STRING,zip:INT>
)
PARTITIONED BY (province STRING,city STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ','
MAP KEYS TERMINATED BY ':';

表创建成功。

然后创建管理表的分区,不创建分区的话,可以在导入数据的时候指向一个分区键的值,系统会自动创建分区

然后我向分区中导入本地数据文件:

数据文件emp_shanxi的数据如下所示:

vi emp_shanxi

将该数据文件导入到hive。

对于其他数据也用同样的方法进行导入

LOAD DATA LOCAL INPATH './emp_shandong' OVERWRITE INTO TABLE emp
PARTITION(province='shandong',city='qingdao');

现在可以查看下hive数据库的目录结构:

emp数据库表下面产生了这么多的分区目录,继续进入分区目录中,会发现二级分区目录,二级目录下就是对应分区的数据文件;

查看分区表的元数据信息:

现在执行Hsql看下分区裁剪效果:

通过查看执行计划,可以看到分区列其实在Hive里面相当于虚拟列放到了普通列的后面。

也可以采用查询语句向表中插入数据,我参照《Hive编程指南》中的例子,jimdb库中的employees表和emp表表结构和分区键都一样。但是执行下来报错:

hive (jimhe)> INSERT OVERWRITE TABLE emp
> PARTITION(province='guangdong',city='shenzhen')
> SELECT * FROM jimdb.employees
> WHERE province='guangdong' AND city='shenzhen';
FAILED: SemanticException [Error 10044]: Line 1:23 Cannot insert into target table because column number/types are different ''shenzhen'': Table insclause-0 has 5 columns, but query has 7 columns.

根据错误提示,原因可能是Hive在识别select * from  jimdb.employees WHERE province='guangdong' AND city='shenzhen' 这块语句时,select * 查询出来的列也包括了两列分区列,一共就7个字段,而insert 的表只能识别到5个字段,因此在这种情况下,只能对语句进行改造:

hive (jimhe)> INSERT OVERWRITE TABLE emp
> PARTITION(province='guangdong',city='shenzhen')
> SELECT name,salary,subordinates,deductions,address FROM jimdb.employees
> WHERE province='guangdong' AND city='shenzhen';
Query ID = hadoop_20180610093118_a335884d-778a-42a7-972c-590f5ff5019d
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Job running in-process (local Hadoop)
2018-06-10 09:31:22,390 Stage-1 map = 0%, reduce = 0%
2018-06-10 09:31:25,425 Stage-1 map = 100%, reduce = 0%
Ended Job = job_local1736204471_0001
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to: hdfs://192.168.178.134:9000/user/hive/warehouse/jimhe.db/emp/province=guangdong/city=shenzhen/.hive-staging_hive_2018-06-10_09-31-18_305_1073974836886037247-1/-ext-10000
Loading data to table jimhe.emp partition (province=guangdong, city=shenzhen)
Partition jimhe.emp{province=guangdong, city=shenzhen} stats: [numFiles=1, numRows=21504, totalSize=1951488, rawDataSize=1929984]
MapReduce Jobs Launched: 
Stage-Stage-1: HDFS Read: 1904512 HDFS Write: 1951594 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
name salary subordinates deductions address
Time taken: 8.99 seconds

如果一个分区表的分区过多,可以使用一种将from 源表名放到最前面,然后将所有的insert ...select .....语句放到一个语句中进行执行。

FROM jimdb.employees
INSERT OVERWRITE TABLE emp
PARTITION(province='guangdong',city='shenzhen')
SELECT name,salary,subordinates,deductions,address 
WHERE province='guangdong' AND city='shenzhen'
INSERT OVERWRITE TABLE emp
PARTITION(province='hainan',city='haikou')
SELECT name,salary,subordinates,deductions,address 
WHERE province='hainan' AND city='haikou'
INSERT OVERWRITE TABLE emp
PARTITION(province='zhejiang',city='hangzhou')
SELECT name,salary,subordinates,deductions,address 
WHERE province='zhejiang' AND city='hangzhou'
INSERT OVERWRITE TABLE emp
PARTITION(province='shandong',city='qingdao')
SELECT name,salary,subordinates,deductions,address 
WHERE province='shandong' AND city='qingdao';

具体的执行过程如下:

hive (jimhe)> FROM jimdb.employees
> INSERT OVERWRITE TABLE emp
> PARTITION(province='guangdong',city='shenzhen')
> SELECT name,salary,subordinates,deductions,address 
> WHERE province='guangdong' AND city='shenzhen'
> INSERT OVERWRITE TABLE emp
> PARTITION(province='hainan',city='haikou')
> SELECT name,salary,subordinates,deductions,address 
> WHERE province='hainan' AND city='haikou'
> INSERT OVERWRITE TABLE emp
> PARTITION(province='zhejiang',city='hangzhou')
> SELECT name,salary,subordinates,deductions,address 
> WHERE province='zhejiang' AND city='hangzhou'
> INSERT OVERWRITE TABLE emp
> PARTITION(province='shandong',city='qingdao')
> SELECT name,salary,subordinates,deductions,address 
> WHERE province='shandong' AND city='qingdao';
Query ID = hadoop_20180610094833_3f5718bf-2082-46d2-b282-77f9b43c56a0
Total jobs = 9
Launching Job 1 out of 9
Number of reduce tasks is set to 0 since there's no reduce operator
Job running in-process (local Hadoop)
2018-06-10 09:48:36,639 Stage-4 map = 0%, reduce = 0%
2018-06-10 09:48:39,669 Stage-4 map = 100%, reduce = 0%
Ended Job = job_local832435077_0004
Stage-7 is selected by condition resolver.
Stage-6 is filtered out by condition resolver.
Stage-8 is filtered out by condition resolver.
Stage-13 is selected by condition resolver.
Stage-12 is filtered out by condition resolver.
Stage-14 is filtered out by condition resolver.
Stage-19 is selected by condition resolver.
Stage-18 is filtered out by condition resolver.
Stage-20 is filtered out by condition resolver.
Stage-25 is selected by condition resolver.
Stage-24 is filtered out by condition resolver.
Stage-26 is filtered out by condition resolver.
Moving data to: hdfs://192.168.178.134:9000/user/hive/warehouse/jimhe.db/emp/province=guangdong/city=shenzhen/.hive-staging_hive_2018-06-10_09-48-33_641_6266993806449569955-1/-ext-10000
Moving data to: hdfs://192.168.178.134:9000/user/hive/warehouse/jimhe.db/emp/province=hainan/city=haikou/.hive-staging_hive_2018-06-10_09-48-33_641_6266993806449569955-1/-ext-10002
Moving data to: hdfs://192.168.178.134:9000/user/hive/warehouse/jimhe.db/emp/province=zhejiang/city=hangzhou/.hive-staging_hive_2018-06-10_09-48-33_641_6266993806449569955-1/-ext-10004
Moving data to: hdfs://192.168.178.134:9000/user/hive/warehouse/jimhe.db/emp/province=shandong/city=qingdao/.hive-staging_hive_2018-06-10_09-48-33_641_6266993806449569955-1/-ext-10006
Loading data to table jimhe.emp partition (province=guangdong, city=shenzhen)
Loading data to table jimhe.emp partition (province=hainan, city=haikou)
Loading data to table jimhe.emp partition (province=zhejiang, city=hangzhou)
Loading data to table jimhe.emp partition (province=shandong, city=qingdao)
Partition jimhe.emp{province=guangdong, city=shenzhen} stats: [numFiles=1, numRows=0, totalSize=1951488, rawDataSize=0]
Partition jimhe.emp{province=hainan, city=haikou} stats: [numFiles=1, numRows=0, totalSize=1800960, rawDataSize=0]
Partition jimhe.emp{province=zhejiang, city=hangzhou} stats: [numFiles=1, numRows=0, totalSize=1929982, rawDataSize=0]
Partition jimhe.emp{province=shandong, city=qingdao} stats: [numFiles=1, numRows=0, totalSize=6263742, rawDataSize=0]
MapReduce Jobs Launched: 
Stage-Stage-4: HDFS Read: 15481747 HDFS Write: 13898182 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
name salary subordinates deductions address
Time taken: 9.653 seconds

删除分区:

在未删除分区前查询分区province='guangdong' ,city='shenzhen'的数据条数

Time taken: 3.121 seconds, Fetched: 1 row(s)

然后执行删除分区语句:

hive (jimhe)> ALTER TABLE emp DROP PARTITION(province='guangdong',city='shenzhen');
Dropped the partition province=guangdong/city=shenzhen
OK
Time taken: 1.092 seconds

查询分区的数据:

Time taken: 1.854 seconds, Fetched: 1 row(s)

在数据库表目录中查询分区目录,看是否删除掉相应的目录:

hadoop@192-168-178-134:/usr/local/hive/hive-1.2.2/bin$ hdfs dfs -ls /user/hive/warehouse/jimhe.db/emp/province=guangdong

Found 1 items
drwxr-xr-x - hadoop supergroup 0 2018-06-09 19:22 /user/hive/warehouse/jimhe.db/emp/province=guangdong/city=guangzhou

发现的确已经删除掉了。

Hive管理表分区的创建,数据导入,分区的删除操作的更多相关文章

  1. Hive管理表,外部表及外部分区表的深入探讨

    Hive管理表,也叫内部表.Hive控制着管理表的整个生命周期,默认情况下Hive管理表的数据存放在hive的主目录:/user/hive/warehouse/下,并且当我们删除一张表时,这张表的数据 ...

  2. 2.Hive的几种常见的数据导入方式

    好久没写Hive的那些事了,今天开始写点吧.今天的话题是总结Hive的几种常见的数据导入方式,我总结为四种:(1).从本地文件系统中导入数据到Hive表:(2).从HDFS上导入数据到Hive表:(3 ...

  3. EFI/GPT探索(为何win7分区时创建100M隐藏分区)

    EFI/GPT探索(为何win7分区时创建100M隐藏分区) 转自 http://blog.tomatoit.net/article.asp?id=348 EFI/GPT是新一代的固件/启动管理技术, ...

  4. hive数据导入导出和常用操作

    导出到本地文件 insert overwrite local directory '/home/hadoop'select * from test1; 导出到hdfs insert overwrite ...

  5. 使用ClickHouse表函数将MySQL数据导入到ClickHouse

    #clickhouse-client :create database dw; :use dw; --导入数据: CREATE TABLE Orders ENGINE = MergeTree ORDE ...

  6. 数据库的SQL语句创建和主外键删除操作

    create table UserType ( Id ,), Name nvarchar() not null ) go create table UserInfo ( Id ,), LoginPwd ...

  7. hive外部表的建立与数据匹配

    1.建立hive的外部表匹配hdfs上的数据 出现如下报错: hive (solar)> ; OK Failed with exception java.io.IOException:java. ...

  8. Thinkphp 数据的修改及删除操作

    一.数据修改操作 save()  实现数据修改,返回受影响的记录条数 具体有两种方式实现数据修改,与添加类似(数组.AR方式) 1.数组方式: a)         $goods = D(“Goods ...

  9. js实现表单项的全选、反选以及删除操作

    <html> <head> <title>test</title> <script language="javascript" ...

随机推荐

  1. mysql并发控制之快照读和当前读

    上一篇简单的介绍了下MVCC(多版本并发控制)的原理,MVCC会对事物内操作的数据做多版本控制,从而实现并发环境下事物对数据写操作的阻塞不影响读操作的性能.而这个多版本控制的实现是由undo log来 ...

  2. Java基础 -- Java 抽象类 抽象方法

    总结: 1. 抽象类不能被实例化(初学者很容易犯的错),如果被实例化,就会报错,编译无法通过.只有抽象类的非抽象子类可以创建对象. 2. 抽象类中不一定包含抽象方法,但是有抽象方法的类必定是抽象类. ...

  3. 虎牙直播弹幕转换字幕格式 基于Node.js 的 huya-danmu

    1 首先安装nodejs运行环境, 从 http://nodejs.cn/download/ 下载对应的版本 2 安装 huya-danmu 模块, https://github.com/BacooT ...

  4. Gitlab_ansible_jenkins三剑客①搭建gitlab的详细步骤

    环境准备 1.关闭selinux和防火墙 [root@node1 lesson2]# vim /etc/sysconfig/selinux SELINUX=disabled # systemctl s ...

  5. php输出语句 echo print printf print_r var_dump sprintf

    php的几种输出方式: echo 常用的输出语句,例如:echo 'helloworld!'; print() 输出语句,有返回值.例如:print('helloworld!'); 输出成功返回1,失 ...

  6. 获取页面所有a标签href

    for(i=0;i<=document.getElementsByTagName("a").length;i++){ console.log(document.getElem ...

  7. PHP-高并发和大流量的解决方案

    一  高并发的概念在互联网时代,并发,高并发通常是指并发访问.也就是在某个时间点,有多少个访问同时到来. 二  高并发架构相关概念1.QPS (每秒查询率) : 每秒钟请求或者查询的数量,在互联网领域 ...

  8. <!特别的一天>

    <!DOCTYPE html> <html> <head> <meta charset="gb2312/"> <title&g ...

  9. .net core 利用日志查看ef生成的SQL语句

    EF Core 没有直接提供像 EF6 那样方便的在日志中记录最终生成的 SQL 的功能,可以通过官方提供的日志记录(Microsoft.Extensions.Logging)实现. 一. 使用 Mi ...

  10. Windows下安装Redis客户端

    Redis是有名的NoSql数据库,一般Linux都会默认支持.但在Windows环境中,可能需要手动安装设置才能有效使用.这里就简单介绍一下Windows下Redis服务的安装方法,希望能够帮到你. ...