https://oj.neu.edu.cn/problem/1387

给一个点数N <= 100000, 边 <= 1000000的无向图,求补图的联通块数,以及每个块包含的点数

由于点数太大,补图会是稠密图,甚至建立补图都要O(n^2),只能挖掘一下联通块,bfs,补图的性质,从原图入手求补图的联通块:

在原图中不直接相邻的点,在补图中一定属于同一个联通块

每个点只属于一个联通块,所以找好一个联通块之后可以删去这个联通块的所有点,把图规模缩小

这样子:1.准备一个集合放所有未探索的点,初始化时将1~N放进去

2.从集合中取一点放入队列(新的联通块)

3.当队列不为空时,从队列中取一个点u并弹出,将原图中与u直接相连的点标记;遍历集合,将在集合中的(即未探索的)并且未被标记的点(这些点属于本联通块)入队并从集合中删去,将标记删去。重复执行直到队列为空

4.集合不为空转2,为空结束

考虑有删除操作和时间问题,集合的实现当然是选择链表,用数组实现的双向链表即可 

优化有两个:一是通过原图找补图的联通块;二是把搜过的点删除,这样每次找未标记的点时比起从1循环到N更优(常数优化(误))

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int maxn = 1e5+, maxm = 1e6+, inf = 0x3f3f3f3f;
struct lnk{
int val;
int pre, nxt;
}lk[maxn];
struct edge{
int v, nxt;
}e[maxm*];
int head[maxn], tot, block_cnt, n, m;
int adj[maxn], vis[maxn], num[maxn];
void addedge(int u, int v){
e[tot] = (edge){v, head[u]};
head[u] = tot++;
}
void dele(int x){
lk[lk[x].nxt].pre = lk[x].pre;
lk[lk[x].pre].nxt = lk[x].nxt;
}
void src(){
for(int i = ; i <= n; i++){
vis[i] = adj[i] = ;
}
queue<int>Q;
block_cnt = ;
while(lk[].nxt != -){
//puts("blk++");
Q.push(lk[].nxt);
//printf("take %d\n", lk[0].nxt);
vis[lk[lk[].nxt].val] = ;
dele(lk[].nxt);
block_cnt++;
num[block_cnt] = ;
while(!Q.empty()){
int x = Q.front();
x = lk[x].val;
//printf("%d\n", x);
Q.pop();
for(int i = head[x]; ~i; i = e[i].nxt){
int v = e[i].v;
adj[v] = ;
}
for(int i = lk[].nxt; ~i; i = lk[i].nxt){
int w = lk[i].val;
if(!vis[w] && !adj[w]){
Q.push(w);
vis[w] = ;
dele(i);
num[block_cnt]++;
}
}
for(int i = head[x]; ~i; i = e[i].nxt){
int v = e[i].v;
adj[v] = ;
}
}
}
}
int main(){
int t;
scanf("%d", &t);
while(t--){
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++)
head[i] = -;
tot = ;
while(m--){
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
for(int i = ; i <= n; i++){
lk[i].val = i;
lk[i].pre = i-;
lk[i].nxt = i+;
}
lk[n].nxt = -;
lk[].nxt = ;
src();
sort(num+, num+block_cnt+);
printf("%d\n", block_cnt);
for(int i = ; i <= block_cnt; i++){
printf("%d%c", num[i], i == block_cnt ? '\n' : ' ');
}
}
return ;
}
/*
3
5 7
1 2
1 3
1 4
1 5
2 3
2 4
2 5
6 9
1 4 1 5 1 6
2 4 2 5 2 6
3 4 3 5 3 6
3 3
1 2 2 3 3 1 */

链表加bfs求补图联通块的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量

    D. Directed Roads   ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...

  2. Feeding Time 【bfs求最大连通块】

    题目链接:https://ac.nowcoder.com/acm/contest/1870/J 题目大意:求最大的连通块是多大 主要是为了防止自己忘记bfs怎么写..... #include<s ...

  3. 分别利用并查集,DFS和BFS方法求联通块的数量

    联通块是指给定n个点,输入a,b(1<=a,b<=n),然后将a,b连接,凡是连接在一起的所有数就是一个联通块: 题意:第一行输入n,m,分别表示有n个数,有输入m对连接点,以下将要输入m ...

  4. 图-用DFS求连通块- UVa 1103和用BFS求最短路-UVa816。

    这道题目甚长, 代码也是甚长, 但是思路却不是太难.然而有好多代码实现的细节, 确是十分的巧妙. 对代码阅读能力, 代码理解能力, 代码实现能力, 代码实现技巧, DFS方法都大有裨益, 敬请有兴趣者 ...

  5. 【UVA10765】Doves and bombs (BCC求割点后联通块数量)

    题目: 题意: 给了一个联通无向图,现在问去掉某个点,会让图变成几个联通块? 输出的按分出的从多到小,若相等,输出标号从小到大.输出M个. 分析: BCC求割点后联通块数量,Tarjan算法. 联通块 ...

  6. 【BZOJ 1098】办公楼(补图连通块个数,Bfs)

    补图连通块个数这大概是一个套路吧,我之前没有见到过,想了好久都没有想出来QaQ 事实上这个做法本身就是一个朴素算法,但进行巧妙的实现,就可以分析出它的上界不会超过 $O(n + m)$. 接下来介绍一 ...

  7. 用dfs求联通块(UVa572)

    一.题目 输入一个m行n列的字符矩阵,统计字符“@”组成多少个八连块.如果两个字符所在的格子相邻(横.竖.或者对角线方向),就说它们属于同一个八连块. 二.解题思路 和前面的二叉树遍历类似,图也有DF ...

  8. 2014 Super Training #4 E Paint the Grid Reloaded --联通块缩点+BFS

    原题: ZOJ 3781 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 题意: 给一个n*m的X,O构成的格子,对 ...

  9. POJ-3107 Godfather 求每个节点连接的联通块数量

    dp[n][2],维护儿子的联通块数量和父亲的联通块数量. 第一遍dfs求儿子,第二遍dfs求爸爸. #include<iostream> #include<cstring> ...

随机推荐

  1. CRMEB系统开发文档

    CRMEB系统开发文档 https://gitee.com/ZhongBangKeJi/CRMEB hibernate:学习文档https://blog.csdn.net/u013087513/art ...

  2. python——Pycharm的简单介绍

    一.什么是Pycharm? Pycharm是一种python IDE,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试.语法高亮.Project管理.代码跳转.智能提示.自 ...

  3. Unity中各种格式计时器

    问题背景: 在开发游戏过程中,很多地方需要倒计时,但是各种地方要的倒计时格式不同,倒计时都会写,在这里不详细介绍,写的目的就是为了记录一下,方便复用(为了在开发过程中不为了小问题浪费不必要脑细胞) 1 ...

  4. python-shutil学习

    shutil:高级的 文件.文件夹.压缩包 处理模块 1. shutil.copyfileobj(fsrc, fdst[, length])(copyfileobj方法只会拷贝文件内容)将文件内容拷贝 ...

  5. Emacs中的拼写检查

    无论是在Emacs中写英文日记(diary).Org mode笔记,还是撰写程序的注释和文档,拼写检查都是一项提高工作效率.保证成果品质的必不可缺的工具.拼写检查对于常见的文字处理软件(如Word.L ...

  6. Tomcat7配置Https

    使用的是UCloud的免费证书: 教程: https://docs.ucloud.cn/security/ussl/index 购买证书的地址: https://console.ucloud.cn/u ...

  7. 【redis】在dotnet core下的redis的使用

    1.Install-Package Microsoft.Extensions.Caching.Redis -Version 2.2.0 2.注入 services.AddDistributedRedi ...

  8. C# 0xC0000005 捕获

    [HandleProcessCorruptedStateExceptions]//捕获c++异常 [SecurityCritical]//捕获c++异常 public void xxx() { try ...

  9. MYSQL可调用执行自定义SQL的代码

    DELIMITER $$ USE `mysql_wispeed01`$$ DROP PROCEDURE IF EXISTS `sp_execSQL`$$ CREATE DEFINER=`sa`@`%` ...

  10. 深入理解CPP与C中bsearch函数的用法

    ·使用besearch函数的前提(一些废话) 首先让我们先亮出二分法的定义: https://baike.baidu.com/item/二分法/1364267 以及二分法实现的方法: https:// ...