C. Neko does Maths
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.
Neko has two integers a and b. His goal is to find a non-negative integer k such that the least common multiple of a+k and b+k is the smallest possible. If there are multiple optimal integers k, he needs to choose the smallest one.
Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?
Input
The only line contains two integers a and b (1≤a,b≤109).
Output
Print the smallest non-negative integer k (k≥0) such that the lowest common multiple of a+k and b+k is the smallest possible.
If there are many possible integers k giving the same value of the least common multiple, print the smallest one.
Examples
inputCopy
6 10
outputCopy
2
inputCopy
21 31
outputCopy
9
inputCopy
5 10
outputCopy
0
Note
In the first test, one should choose k=2, as the least common multiple of 6+2 and 10+2 is 24, which is the smallest least common multiple possible.
求x和y加上一个k之后,使(x+k)和(y+k)的最小公倍数最小
解法lcm(x,y)=x*y/gcd(x,y),那么求gcd(x+k,y+k)的最大就好了,而知道gcd(x,y)=gcd(y-x,x),因为如果gcd(x,y)=c,那么,x%c=0,y%c=0,(y-x)%c=0,则,求gcd(y-x,x+k),求出所有的y-x的因子,然后全部都拿来算一下,现在要知道因子,求对应的k值,可知k+x是因子的倍数,则k=因子-(因子%x)就可以了,然后每一次算一下lcm,得出最大的保留就好了
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define sf scanf
#define scf(x) scanf("%lld",&x)
#define scff(x,y) scanf("%lld%lld",&x,&y)
#define scfff(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define vi vector<int>
#define mp make_pair
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#define rep(i,a,n) for (ll i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
using namespace std;
const ll mod=1e9+7;
const double eps=1e-6;
const double pi=acos(-1.0);
const int inf=0x7fffffff;
const int N=1e7+7;
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
ll lcm(ll x,ll y)
{
return x*y/(gcd(x,y));
}
vector<int> v;
int main()
{
ll x,y;scff(x,y);
if(x>y) swap(x,y);
ll ans=0,maxn=lcm(x,y),ss=y-x;
for(ll i=1;i*i<=ss;i++)
{
if(ss%i==0)
{
v.push_back(i);
if(i*i!=ss)
v.push_back(ss/i);
}
}
rep(i,0,v.size() )
{
ll t=0;
if(x%v[i]!=0)
t=v[i]-x%v[i];
ll now=lcm(x+t,y+t);
if(now<maxn)
{
maxn=now;
ans=t;
}
}
cout<<ans;
return 0;
}
C. Neko does Maths的更多相关文章
- Codeforces C.Neko does Maths
题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...
- Neko does Maths CodeForces - 1152C 数论欧几里得
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...
- codeforces#1152C. Neko does Maths(最小公倍数)
题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
- C. Neko does Maths(数论 二进制枚举因数)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...
- CF 552 Neko does Maths
给出两个数a,b 求k 使得 a+k b+k有最小公倍数 a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小 因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大 ...
- Codeforce Round #554 Div.2 C - Neko does Maths
数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
- CF1152C Neko does Maths
思路: 假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd( ...
随机推荐
- 20165337《网络对抗技术》week1 Exp0 Kali安装
1.下载kali kali官网:https://www.kali.org 在官网中下载,并且在VMvare里打开 2.修改视图 进去之后虚拟机界面很小,需要修改视图来调整 3.网络设置 4.文件夹共享 ...
- 2018-2019-2 网络对抗技术 20165221 Exp3 免杀原理与实践
2018-2019-2 网络对抗技术 20165221 Exp3 免杀原理与实践 基础问题回答 杀软是如何检测出恶意代码的? 主要依托三种恶意软件检测机制. 基于特征码的检测:一段特征码就是一段或者多 ...
- spring boot启动项的问题
<parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot ...
- centos命令安装
1.解决ifconfig命令失效:需要安装net-tools工具 yum install net-tools 2.免密码登录 (1)通过命令,产生公钥信息 ssh-keygen -t rsa 如果提示 ...
- 那什么时候会触发BFC呢?块级格式化上下文
<html>根元素: float的值不为none: overflow的值为auto.scroll或hidden: display的值为table-cell.table-caption和in ...
- 笔记,ajax,事件绑定,序列化
1. Python序列化 字符串 = json.dumps(对象) 对象->字符串 对象 = json.loads(字符串) 字符串->对象 JavaScript: 字符串 = JSON. ...
- app个推(透传消息)
- vmware克隆虚拟机后无法联网
1.基础知识: 就算是克隆的系统,但是由于物理地址改变了,导致rules文件进行了重新绑定 网卡会从eth0变成eth1(逐渐+1),而且mac地址和uuid也会有变化. 2.解决方法: 2.1编辑e ...
- Typescript04---模块、命名空间
在Typescript1.5 中,内部模块称作命名空间,外部模块成为模块 一.什么是模块? 模块就是一个或一组功能模块. 模块在其自身的作用域里执行,而不是在全局作用域里.意味着,模块中的变量.函数. ...
- 小米众筹新品---8H凉感慢回弹记忆绵枕 99元 上手开箱图
在众目睽睽之下,商城终于成了杂货铺 众筹发布了第98期新品——8H凉感慢回弹记忆绵枕H1,售价为99元,主打舒适凉感,抗菌吸湿,三曲线护颈设计,3~5秒慢回弹. 本着程序员的读书历程:x 语言入门 — ...