C. Neko does Maths
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.
Neko has two integers a and b. His goal is to find a non-negative integer k such that the least common multiple of a+k and b+k is the smallest possible. If there are multiple optimal integers k, he needs to choose the smallest one.
Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?
Input
The only line contains two integers a and b (1≤a,b≤109).
Output
Print the smallest non-negative integer k (k≥0) such that the lowest common multiple of a+k and b+k is the smallest possible.
If there are many possible integers k giving the same value of the least common multiple, print the smallest one.
Examples
inputCopy
6 10
outputCopy
2
inputCopy
21 31
outputCopy
9
inputCopy
5 10
outputCopy
0
Note
In the first test, one should choose k=2, as the least common multiple of 6+2 and 10+2 is 24, which is the smallest least common multiple possible.
求x和y加上一个k之后,使(x+k)和(y+k)的最小公倍数最小
解法lcm(x,y)=x*y/gcd(x,y),那么求gcd(x+k,y+k)的最大就好了,而知道gcd(x,y)=gcd(y-x,x),因为如果gcd(x,y)=c,那么,x%c=0,y%c=0,(y-x)%c=0,则,求gcd(y-x,x+k),求出所有的y-x的因子,然后全部都拿来算一下,现在要知道因子,求对应的k值,可知k+x是因子的倍数,则k=因子-(因子%x)就可以了,然后每一次算一下lcm,得出最大的保留就好了
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define sf scanf
#define scf(x) scanf("%lld",&x)
#define scff(x,y) scanf("%lld%lld",&x,&y)
#define scfff(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define vi vector<int>
#define mp make_pair
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#define rep(i,a,n) for (ll i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
using namespace std;
const ll mod=1e9+7;
const double eps=1e-6;
const double pi=acos(-1.0);
const int inf=0x7fffffff;
const int N=1e7+7;
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
ll lcm(ll x,ll y)
{
return x*y/(gcd(x,y));
}
vector<int> v;
int main()
{
ll x,y;scff(x,y);
if(x>y) swap(x,y);
ll ans=0,maxn=lcm(x,y),ss=y-x;
for(ll i=1;i*i<=ss;i++)
{
if(ss%i==0)
{
v.push_back(i);
if(i*i!=ss)
v.push_back(ss/i);
}
}
rep(i,0,v.size() )
{
ll t=0;
if(x%v[i]!=0)
t=v[i]-x%v[i];
ll now=lcm(x+t,y+t);
if(now<maxn)
{
maxn=now;
ans=t;
}
}
cout<<ans;
return 0;
}
C. Neko does Maths的更多相关文章
- Codeforces C.Neko does Maths
题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...
- Neko does Maths CodeForces - 1152C 数论欧几里得
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...
- codeforces#1152C. Neko does Maths(最小公倍数)
题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
- C. Neko does Maths(数论 二进制枚举因数)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...
- CF 552 Neko does Maths
给出两个数a,b 求k 使得 a+k b+k有最小公倍数 a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小 因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大 ...
- Codeforce Round #554 Div.2 C - Neko does Maths
数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
- CF1152C Neko does Maths
思路: 假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd( ...
随机推荐
- Java基础 -- String,StringBuilder,StringBuffer三者的区别
结论 1-String,StringBuilder,StringBuffer 之间的区别主要是在两个方面,即运行速度和线程安全这两方面: 首先说运行速度,或者说是执行速度,在这方面运行速度快慢为:St ...
- 2、阿里云ECS发送邮件到腾讯企业邮箱(ECS默认不开启25端口)
阿里云ECS默认禁用25端口导致发邮件失败. 方法一: 使用shell脚本发送邮件,需要配置mailx 1.安装软件 yum install mailx 2.配置 vim /etc/mail.rc在文 ...
- Hadoop第一式:配置Linux环境之免密配置及SSH原理
一.配置SSH免密登录 进入/.ssh目录,执行密钥生成指令 ssh-keygen -t rsa (rsa为默认加密格式) 然后会出现四个提示,让你选择密钥保存路径.指纹.拍照啥的,不用管它直接回车过 ...
- Finally! I do understand "flex-basis"
Long, long, long ago,CSS3就支持了flex布局,现在各家浏览器都支持标准的语法了,这里推荐一篇比较全面的图文化教程A Complete Guide to Flexbox. 关于 ...
- ssh 连接不上报Connection closed by remote host
解决办法 (1)查看这两个文件是否有阻止cat /etc/hosts.deny cat /etc/hosts.allow (2)客户端连接数过多修改/etc/ssh/sshd_config中#MaxS ...
- 阿里云+WordPress搭建个人博客
搭建过程: 第一步:首先你需要一台阿里云服务器ECS,如果你是学生,可以享受学生价9.5元/月 (阿里云翼计划:https://promotion.aliyun.com/ntms/act/campus ...
- MongoDB数据库发展历程及商业模式
2007年,Dwight Merriman, Eliot Horowitz和Kevin Ryan成立10gen软件公司,在成立之初,这家的公司目标进军云计算行业,为企业提供云计算服务.在开发云计算产品 ...
- 杂记:腾讯暑期实习 Web 后端开发面试经历
今天面试(一面)腾讯暑期实习 Web 后端开发,一言难尽. 第一部分,常规的自我介绍. 介绍完,面试官问我对人工智能有什么理解?深度学习和机器学习的区别?对调参有什么见解?语音识别中怎样运用了机器学习 ...
- Extjs4.2 GridPanel中显示单选按钮
效果:如上图. 代码:其中需要显示单选按钮的列 { dataIndex: 'FeeModel', text: '收費模式', flex: 1, align: 'left', radioValues: ...
- ScriptEngine执行复杂js报数组越界
import javax.script.Invocable; import javax.script.ScriptEngine; import javax.script.ScriptEngineMan ...