time limit per test1 second

memory limit per test256 megabytes

inputstandard input

outputstandard output

Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.

Neko has two integers a and b. His goal is to find a non-negative integer k such that the least common multiple of a+k and b+k is the smallest possible. If there are multiple optimal integers k, he needs to choose the smallest one.

Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?

Input

The only line contains two integers a and b (1≤a,b≤109).

Output

Print the smallest non-negative integer k (k≥0) such that the lowest common multiple of a+k and b+k is the smallest possible.

If there are many possible integers k giving the same value of the least common multiple, print the smallest one.

Examples

inputCopy

6 10

outputCopy

2

inputCopy

21 31

outputCopy

9

inputCopy

5 10

outputCopy

0

Note

In the first test, one should choose k=2, as the least common multiple of 6+2 and 10+2 is 24, which is the smallest least common multiple possible.

求x和y加上一个k之后,使(x+k)和(y+k)的最小公倍数最小

解法lcm(x,y)=x*y/gcd(x,y),那么求gcd(x+k,y+k)的最大就好了,而知道gcd(x,y)=gcd(y-x,x),因为如果gcd(x,y)=c,那么,x%c=0,y%c=0,(y-x)%c=0,则,求gcd(y-x,x+k),求出所有的y-x的因子,然后全部都拿来算一下,现在要知道因子,求对应的k值,可知k+x是因子的倍数,则k=因子-(因子%x)就可以了,然后每一次算一下lcm,得出最大的保留就好了

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define sf scanf
#define scf(x) scanf("%lld",&x)
#define scff(x,y) scanf("%lld%lld",&x,&y)
#define scfff(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define vi vector<int>
#define mp make_pair
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#define rep(i,a,n) for (ll i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
using namespace std;
const ll mod=1e9+7;
const double eps=1e-6;
const double pi=acos(-1.0);
const int inf=0x7fffffff;
const int N=1e7+7;
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
ll lcm(ll x,ll y)
{
return x*y/(gcd(x,y));
}
vector<int> v;
int main()
{
ll x,y;scff(x,y);
if(x>y) swap(x,y);
ll ans=0,maxn=lcm(x,y),ss=y-x;
for(ll i=1;i*i<=ss;i++)
{
if(ss%i==0)
{
v.push_back(i);
if(i*i!=ss)
v.push_back(ss/i);
}
}
rep(i,0,v.size() )
{
ll t=0;
if(x%v[i]!=0)
t=v[i]-x%v[i];
ll now=lcm(x+t,y+t);
if(now<maxn)
{
maxn=now;
ans=t;
}
}
cout<<ans;
return 0;
}

C. Neko does Maths的更多相关文章

  1. Codeforces C.Neko does Maths

    题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...

  2. Neko does Maths CodeForces - 1152C 数论欧几里得

    Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...

  3. codeforces#1152C. Neko does Maths(最小公倍数)

    题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...

  4. Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)

    传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...

  5. C. Neko does Maths(数论 二进制枚举因数)

     题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...

  6. CF 552 Neko does Maths

    给出两个数a,b 求k     使得 a+k b+k有最小公倍数 a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小 因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大 ...

  7. Codeforce Round #554 Div.2 C - Neko does Maths

    数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...

  8. Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)

    题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k     算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...

  9. CF1152C Neko does Maths

    思路: 假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd( ...

随机推荐

  1. 读spring源码(二)-XmlBeanDefinitionReader-解析BeanDefinition

    上次说到ApplicationContext加载BeanDefinition时会创建一个XmlBeanDefinitionReader,将XML解析.BeanDefinition加载委托给XmlBea ...

  2. AttributeError: 'module' object has no attribute 'enableTrace'

    Traceback (most recent call last): File "Long-lived-connection.py", line 29, in <module ...

  3. flask蓝图的简单使用

    1.flask的简单使用 from flask import Flask # from flask import make_response app = Flask(__name__) app.con ...

  4. C# this关键字的四种用法

    Go to below URL to find more details and example. http://blog.csdn.net/longlong821/article/details/7 ...

  5. java sigar获取本地信息以及org.hyperic.sigar.SigarException: The device is not ready报错解决

    window下,使用java sigar 获取磁盘使用率,cpu使用率以及内存使用情况等信息时. 一:首先需要下载jar包和相关文件 sigar-1.6.4.zip 如果想了解更多可以去 sigar官 ...

  6. 自定义admin组件

    配置路由 1 新建一个项目, 创建一个app01和stark应用,stark创建一个service包,并在service下创建stark.py.然后注册app 2 仿照site.py的注册代码,写st ...

  7. 如何在MySQL中设置主从复制

    mysql主从同步定义 主从同步机制 配置主从同步 配置主服务器 配置从服务器 使用主从同步来备份 使用mysqldump来备份 备份原始文件 主从同步的小技巧 排错 Slave_IO_Running ...

  8. Gradle 同步时报错,Could not find com.android.support.constraint:constraint-layout:1.0.0-alpha8的解决方法

    Error:Could not find com.android.support.constraint:constraint-layout:1.0.0-alpha8. 原因: SDK 中可能是没有安装 ...

  9. python-初识python

    一.计算机的初步认识 硬件:内存,主板,CPU,硬盘,显卡,显示器等 内存: 优点:存取速度快 缺点:断电后数据会全部丢失 硬盘: 优点:断电后数据也会永久保存 缺点:存取速度远远慢于内存 1.操作系 ...

  10. Net Core Docker 容器部署,修改,保存

    运行镜像 [root@localhost opt]# docker run -itd -p : microsoft/dotnet:latest 查看运行的docker [root@localhost ...