C. Neko does Maths
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.
Neko has two integers a and b. His goal is to find a non-negative integer k such that the least common multiple of a+k and b+k is the smallest possible. If there are multiple optimal integers k, he needs to choose the smallest one.
Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?
Input
The only line contains two integers a and b (1≤a,b≤109).
Output
Print the smallest non-negative integer k (k≥0) such that the lowest common multiple of a+k and b+k is the smallest possible.
If there are many possible integers k giving the same value of the least common multiple, print the smallest one.
Examples
inputCopy
6 10
outputCopy
2
inputCopy
21 31
outputCopy
9
inputCopy
5 10
outputCopy
0
Note
In the first test, one should choose k=2, as the least common multiple of 6+2 and 10+2 is 24, which is the smallest least common multiple possible.
求x和y加上一个k之后,使(x+k)和(y+k)的最小公倍数最小
解法lcm(x,y)=x*y/gcd(x,y),那么求gcd(x+k,y+k)的最大就好了,而知道gcd(x,y)=gcd(y-x,x),因为如果gcd(x,y)=c,那么,x%c=0,y%c=0,(y-x)%c=0,则,求gcd(y-x,x+k),求出所有的y-x的因子,然后全部都拿来算一下,现在要知道因子,求对应的k值,可知k+x是因子的倍数,则k=因子-(因子%x)就可以了,然后每一次算一下lcm,得出最大的保留就好了
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define sf scanf
#define scf(x) scanf("%lld",&x)
#define scff(x,y) scanf("%lld%lld",&x,&y)
#define scfff(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define vi vector<int>
#define mp make_pair
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#define rep(i,a,n) for (ll i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
using namespace std;
const ll mod=1e9+7;
const double eps=1e-6;
const double pi=acos(-1.0);
const int inf=0x7fffffff;
const int N=1e7+7;
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
ll lcm(ll x,ll y)
{
return x*y/(gcd(x,y));
}
vector<int> v;
int main()
{
ll x,y;scff(x,y);
if(x>y) swap(x,y);
ll ans=0,maxn=lcm(x,y),ss=y-x;
for(ll i=1;i*i<=ss;i++)
{
if(ss%i==0)
{
v.push_back(i);
if(i*i!=ss)
v.push_back(ss/i);
}
}
rep(i,0,v.size() )
{
ll t=0;
if(x%v[i]!=0)
t=v[i]-x%v[i];
ll now=lcm(x+t,y+t);
if(now<maxn)
{
maxn=now;
ans=t;
}
}
cout<<ans;
return 0;
}
C. Neko does Maths的更多相关文章
- Codeforces C.Neko does Maths
题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...
- Neko does Maths CodeForces - 1152C 数论欧几里得
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...
- codeforces#1152C. Neko does Maths(最小公倍数)
题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
- C. Neko does Maths(数论 二进制枚举因数)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...
- CF 552 Neko does Maths
给出两个数a,b 求k 使得 a+k b+k有最小公倍数 a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小 因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大 ...
- Codeforce Round #554 Div.2 C - Neko does Maths
数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
- CF1152C Neko does Maths
思路: 假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd( ...
随机推荐
- 20165221 《网络对抗技术》EXP1 PC平台逆向破解
20165221 <网络对抗技术>EXP1 PC平台逆向破解 一.实验内容 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函 ...
- nginx允许IP访问不生效问题【原创】
使用nginx的nginx_upstream_check模块来检测后端服务器的转态时,设置只允许某段IP访问,发现不生效,不在此网段的IP也可以访问. 原因为在允许IP访问最后一定要加deny all ...
- Django_路由详
动态路由和动态参数捕获 动态路由:url支持正则表达式, 访问的url能够匹配成功就去执行对应的视图函数 捕获参数: # 捕获参数,位置传参 url(r'^data/([0-9]{4})/([0-2] ...
- 我的redis入门之路
1:操作环境:vmware12 , centOs7 ,redis5.0.3 centOs7安装与下载链接(原文地址): https://blog.csdn.net/qq_42570879/articl ...
- scrapy 爬取时很多重复 及日志输出
日志输出参考:https://blog.csdn.net/weixin_41666747/article/details/82716688 首先 item 要设置循环外 第二,request 要设置下 ...
- 关于COOKIE在本地可以正常写入发布后不能写入浏览器的问题
看了一下cookie的属性设置如下: HTTP Cookie 设置了secure , 该cookie只能在HTTPS通道下被写入浏览器. HTTPS Cookie 设置了sec ...
- Hadoop之Flume 记录
出现这个错误是自己的粗心大意,解决: 在配置flume-conf.properties文件时,source和channel的对应关系是: myAgentName.sources.mySourceNam ...
- shell实用
nginx日志切割 [root@localhost ~]# vim /opt/fenge.sh #!/bin/bash #Filename:fenge.sh d=$(date -d "-1 ...
- 程序守护服务 Supervisor
一.什么是Supervisor? Supervisor是用Python开发的一套通用的进程管理程序,能将一个普通的命令行进程变为后台daemon,并监控进程状态,异常退出时能自动重启.它是通过fork ...
- SQL Server 创建索引
索引的简介: 索引分为聚集索引和非聚集索引,数据库中的索引类似于一本书的目录,在一本书中通过目录可以快速找到你想要的信息,而不需要读完全书. 索引主要目的是提高了SQL Server系统的性能,加快数 ...