C. Neko does Maths
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.
Neko has two integers a and b. His goal is to find a non-negative integer k such that the least common multiple of a+k and b+k is the smallest possible. If there are multiple optimal integers k, he needs to choose the smallest one.
Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?
Input
The only line contains two integers a and b (1≤a,b≤109).
Output
Print the smallest non-negative integer k (k≥0) such that the lowest common multiple of a+k and b+k is the smallest possible.
If there are many possible integers k giving the same value of the least common multiple, print the smallest one.
Examples
inputCopy
6 10
outputCopy
2
inputCopy
21 31
outputCopy
9
inputCopy
5 10
outputCopy
0
Note
In the first test, one should choose k=2, as the least common multiple of 6+2 and 10+2 is 24, which is the smallest least common multiple possible.
求x和y加上一个k之后,使(x+k)和(y+k)的最小公倍数最小
解法lcm(x,y)=x*y/gcd(x,y),那么求gcd(x+k,y+k)的最大就好了,而知道gcd(x,y)=gcd(y-x,x),因为如果gcd(x,y)=c,那么,x%c=0,y%c=0,(y-x)%c=0,则,求gcd(y-x,x+k),求出所有的y-x的因子,然后全部都拿来算一下,现在要知道因子,求对应的k值,可知k+x是因子的倍数,则k=因子-(因子%x)就可以了,然后每一次算一下lcm,得出最大的保留就好了
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define sf scanf
#define scf(x) scanf("%lld",&x)
#define scff(x,y) scanf("%lld%lld",&x,&y)
#define scfff(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define vi vector<int>
#define mp make_pair
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#define rep(i,a,n) for (ll i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
using namespace std;
const ll mod=1e9+7;
const double eps=1e-6;
const double pi=acos(-1.0);
const int inf=0x7fffffff;
const int N=1e7+7;
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
ll lcm(ll x,ll y)
{
return x*y/(gcd(x,y));
}
vector<int> v;
int main()
{
ll x,y;scff(x,y);
if(x>y) swap(x,y);
ll ans=0,maxn=lcm(x,y),ss=y-x;
for(ll i=1;i*i<=ss;i++)
{
if(ss%i==0)
{
v.push_back(i);
if(i*i!=ss)
v.push_back(ss/i);
}
}
rep(i,0,v.size() )
{
ll t=0;
if(x%v[i]!=0)
t=v[i]-x%v[i];
ll now=lcm(x+t,y+t);
if(now<maxn)
{
maxn=now;
ans=t;
}
}
cout<<ans;
return 0;
}
C. Neko does Maths的更多相关文章
- Codeforces C.Neko does Maths
题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...
- Neko does Maths CodeForces - 1152C 数论欧几里得
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...
- codeforces#1152C. Neko does Maths(最小公倍数)
题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
- C. Neko does Maths(数论 二进制枚举因数)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...
- CF 552 Neko does Maths
给出两个数a,b 求k 使得 a+k b+k有最小公倍数 a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小 因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大 ...
- Codeforce Round #554 Div.2 C - Neko does Maths
数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
- CF1152C Neko does Maths
思路: 假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd( ...
随机推荐
- vuecli3 项目添加配置文件以及使用@映射、代理
在根目录下新建 vue.config.js 1.vue.config.js中配置路径别名方法 // vue.config.js module.exports = { configureWebpack: ...
- flask学习(一)
特点: 短小精悍,可扩展性强 依赖wsgi:werkzurg werkzurg示例: from werkzeug.wrappers import Request, Response from werk ...
- Java 多线程 - Java对象头, Monitor
详见: http://www.cnblogs.com/pureEve/p/6421273.html
- day12 函数对象,名称空间与作用域
""" 今日内容: 1.函数参数传值细节 2.三元表达式 3.列表及字典推导式 4.函数对象 5.名称空间与作用域 6.函数的嵌套定义初识 ""&qu ...
- Nginx配置SSL证书部署HTTPS方法
1.申请域名,绑定服务器ip(我申请的是阿里云服务器,以下就此为例) 2.可以在阿里云上免费申请SSL证书(下载证书,后续会用到) 3.在服务器中配置证书 在服务器上安装Nginx 将下载好的证书上传 ...
- WPF 10天修炼 第四天- WPF布局容器
WPF布局 WPF的窗口也就是Window类,是一个内容控件,该控件派生自ContentControl.内容控件有一个Content属性,该属性有一个限制,只能放置一个用户界面元素,或一个字符串.为了 ...
- python正则表达式--flag修饰符、match对象属性
正则表达式—修饰符 正则表达式可以包含一些标志修饰符来控制匹配模式,用在正则表达式处理函数中的flag参数中,为可选参数. (1) re.I 全写(re.IGNORECASE) 表示使匹配时,忽略大小 ...
- 图文详解之ZSH美化你的终端CLI
在这个博客中,我将介绍安装ITerm2,ZSH shell,“我的ZSH”,主题,ITerm2配色方案,“我的ZSH”插件,并启用“连线”支持,以帮助创建一个美丽而强大的终端. 如果你想让你的常规Ba ...
- java - day007 - 继承(2), 多态,面向对象,抽象类
继承 新建子类对象是,先新建父类对象,并执行父类的构造方法, 默认执行父类的无参构造放方法 可以 手动调用父类的有参构造 super(参数 ) super super.xxx() 调用父类成员 一般重 ...
- web.xml中DispatcherServlet拦截器的配置详情
<welcome-file-list> <welcome-file>index.jsp</welcome-file> <welcome-file& ...