time limit per test1 second

memory limit per test256 megabytes

inputstandard input

outputstandard output

Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.

Neko has two integers a and b. His goal is to find a non-negative integer k such that the least common multiple of a+k and b+k is the smallest possible. If there are multiple optimal integers k, he needs to choose the smallest one.

Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?

Input

The only line contains two integers a and b (1≤a,b≤109).

Output

Print the smallest non-negative integer k (k≥0) such that the lowest common multiple of a+k and b+k is the smallest possible.

If there are many possible integers k giving the same value of the least common multiple, print the smallest one.

Examples

inputCopy

6 10

outputCopy

2

inputCopy

21 31

outputCopy

9

inputCopy

5 10

outputCopy

0

Note

In the first test, one should choose k=2, as the least common multiple of 6+2 and 10+2 is 24, which is the smallest least common multiple possible.

求x和y加上一个k之后,使(x+k)和(y+k)的最小公倍数最小

解法lcm(x,y)=x*y/gcd(x,y),那么求gcd(x+k,y+k)的最大就好了,而知道gcd(x,y)=gcd(y-x,x),因为如果gcd(x,y)=c,那么,x%c=0,y%c=0,(y-x)%c=0,则,求gcd(y-x,x+k),求出所有的y-x的因子,然后全部都拿来算一下,现在要知道因子,求对应的k值,可知k+x是因子的倍数,则k=因子-(因子%x)就可以了,然后每一次算一下lcm,得出最大的保留就好了

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define sf scanf
#define scf(x) scanf("%lld",&x)
#define scff(x,y) scanf("%lld%lld",&x,&y)
#define scfff(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define vi vector<int>
#define mp make_pair
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#define rep(i,a,n) for (ll i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
using namespace std;
const ll mod=1e9+7;
const double eps=1e-6;
const double pi=acos(-1.0);
const int inf=0x7fffffff;
const int N=1e7+7;
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
ll lcm(ll x,ll y)
{
return x*y/(gcd(x,y));
}
vector<int> v;
int main()
{
ll x,y;scff(x,y);
if(x>y) swap(x,y);
ll ans=0,maxn=lcm(x,y),ss=y-x;
for(ll i=1;i*i<=ss;i++)
{
if(ss%i==0)
{
v.push_back(i);
if(i*i!=ss)
v.push_back(ss/i);
}
}
rep(i,0,v.size() )
{
ll t=0;
if(x%v[i]!=0)
t=v[i]-x%v[i];
ll now=lcm(x+t,y+t);
if(now<maxn)
{
maxn=now;
ans=t;
}
}
cout<<ans;
return 0;
}

C. Neko does Maths的更多相关文章

  1. Codeforces C.Neko does Maths

    题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...

  2. Neko does Maths CodeForces - 1152C 数论欧几里得

    Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...

  3. codeforces#1152C. Neko does Maths(最小公倍数)

    题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...

  4. Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)

    传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...

  5. C. Neko does Maths(数论 二进制枚举因数)

     题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...

  6. CF 552 Neko does Maths

    给出两个数a,b 求k     使得 a+k b+k有最小公倍数 a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小 因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大 ...

  7. Codeforce Round #554 Div.2 C - Neko does Maths

    数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...

  8. Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)

    题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k     算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...

  9. CF1152C Neko does Maths

    思路: 假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd( ...

随机推荐

  1. easyui datagrid使用按钮

    $('#datagrid').datagrid({ border:false, fitColumns:true, singleSelect: true, url:url, columns:[[ {fi ...

  2. 2018-2019-2 20165237《网络攻防技术》Exp1 PC平台逆向破解

    2018-2019-2 20165237<网络攻防技术>Exp1 PC平台逆向破解 一.实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调 ...

  3. 感受野RF的计算

    参考博客:https://blog.csdn.net/wgx571859177/article/details/80983043 设第N层的感受野为N_RF,卷积核尺寸为kernel_size,步长为 ...

  4. Django 连接mysql数据库中文乱码

    Django 连接mysql数据库中文乱码 2018年08月25日 20:55:15 可乐乐乐乐乐 阅读数:566   版本:CentOS6.8 python3.6.4 django1.8.2 数据库 ...

  5. [JLOI2014]松鼠的新家-树链剖分

    最开始的时候我在写线段树部分的时候还打了一个build,后来一想,打个球球大作战的build啊!!!有个锤子的用啊!!! #include<bits/stdc++.h> using nam ...

  6. 源码解析Django CBV的本质

    Django CBV模式的源码解析 通常来说,http请求的本质就是基于Socket Django的视图函数,可以基于FBV模式,也可以基于CBV模式. 基于FBV的模式就是在Django的路由映射表 ...

  7. CentOS7.6最小化纯净版安装xfce桌面

    安装Xfce桌面环境 yum groupinstall "X Window system" yum install epel-release yum groupinstall xf ...

  8. [转载 java 技术栈] eclipse 阅读跟踪 Java 源码的几个小技巧!

    本文基于Eclipse IDE,我们每天都使用的IDE其实提供了很多强大的功能,掌握它们,往往能够事半功倍. 1.Quick Type Hierarchy 快速查看类继承体系. 快捷键:Ctrl + ...

  9. elsticsearch在kibanna中的操作

    #建立索引 PUT /es_note_tel{ "settings": { "number_of_shards": 1 }, "mappings&qu ...

  10. Linux基础-命令(续)

    touch  命令: 如果文件不存在,创建文件,  如果文件存在,则修改文件最后修改时间. mkdir  命令: -p  递归创建目录,如,mkdir  -p  a/b/c/d Linux 中同一目录 ...