英文原文链接:http://cs231n.github.io/python-numpy-tutorial/

Numpy

Numpy是Python中科学计算的核心库。它提供了一个高性能的多维数组对象,以及处理这些数组的工具。如果您已经熟悉MATLAB,那么在开始学习Numpy时,您可能会发现本教程非常有用。

Arrays

numpy数组是由所有类型相同的值组成的网格,由非负整数的元组索引。维数为数组的秩;数组的形状是一个整数元组,给出了数组在每个维度上的大小。

我们可以从嵌套的Python列表初始化numpy数组,并使用方括号访问元素:

import numpy as np

a = np.array([1, 2, 3])   # Create a rank 1 array
print(type(a)) # Prints "<class 'numpy.ndarray'>"
print(a.shape) # Prints "(3,)"
print(a[0], a[1], a[2]) # Prints "1 2 3"
a[0] = 5 # Change an element of the array
print(a) # Prints "[5, 2, 3]" b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b.shape) # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0]) # Prints "1 2 4"

Numpy还提供了许多函数来创建数组:

import numpy as np

a = np.zeros((2,2))   # Create an array of all zeros
print(a) # Prints "[[ 0. 0.]
# [ 0. 0.]]" b = np.ones((1,2)) # Create an array of all ones
print(b) # Prints "[[ 1. 1.]]" c = np.full((2,2), 7) # Create a constant array
print(c) # Prints "[[ 7. 7.]
# [ 7. 7.]]" d = np.eye(2) # Create a 2x2 identity matrix
print(d) # Prints "[[ 1. 0.]
# [ 0. 1.]]" e = np.random.random((2,2)) # Create an array filled with random values
print(e) # Might print "[[ 0.91940167 0.08143941]
# [ 0.68744134 0.87236687]]"

Array indexing

Numpy提供了几种索引数组的方法。

Slicing:与Python列表类似,numpy数组也可以被切片。由于数组可能是多维的,您必须为数组的每个维度指定一个切片:

import numpy as np

# Create the following rank 2 array with shape (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) # Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
# [6 7]]
b = a[:2, 1:3] # A slice of an array is a view into the same data, so modifying it
# will modify the original array.

print(a[0, 1]) # Prints "2"
b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1]) # Prints "77"

您还可以混合使用整数索引和切片索引。但是,这样做将产生一个比原始数组低秩的数组。注意,这与MATLAB处理数组切片的方式有很大的不同:

import numpy as np

# Create the following rank 2 array with shape (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) # Two ways of accessing the data in the middle row of the array.
# Mixing integer indexing with slices yields an array of lower rank,
# while using only slices yields an array of the same rank as the
# original array:

row_r1 = a[1, :] # Rank 1 view of the second row of a
row_r2 = a[1:2, :] # Rank 2 view of the second row of a
print(row_r1, row_r1.shape) # Prints "[5 6 7 8] (4,)"
print(row_r2, row_r2.shape) # Prints "[[5 6 7 8]] (1, 4)" # We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape) # Prints "[ 2 6 10] (3,)"
print(col_r2, col_r2.shape) # Prints "[[ 2]
# [ 6]
# [10]] (3, 1)"

Integer array indexing:当您使用切片对numpy数组进行索引时,得到的数组视图将始终是原始数组的子数组。相反,整数数组索引允许使用来自另一个数组的数据构造任意数组。举个例子:

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]]) # Prints "[1 4 5]" # The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]])) # Prints "[1 4 5]" # When using integer array indexing, you can reuse the same
# element from the source array:
print(a[[0, 0], [1, 1]]) # Prints "[2 2]" # Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]])) # Prints "[2 2]"

整数数组索引的一个有用技巧是从矩阵的每一行中选择或修改一个元素:

import numpy as np

# Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) print(a) # prints "array([[ 1, 2, 3],
# [ 4, 5, 6],
# [ 7, 8, 9],
# [10, 11, 12]])" # Create an array of indices
b = np.array([0, 2, 0, 1]) # Select one element from each row of a using the indices in b
print(a[np.arange(4), b]) # Prints "[ 1 6 7 11]" # Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10 print(a) # prints "array([[11, 2, 3],
# [ 4, 5, 16],
# [17, 8, 9],
# [10, 21, 12]])

Boolean array indexing:布尔数组索引允许选择数组的任意元素。通常,这种索引类型用于选择满足某种条件的数组元素。举个例子:

import numpy as np

a = np.array([[1,2], [3, 4], [5, 6]])

bool_idx = (a > 2)   # Find the elements of a that are bigger than 2;
# this returns a numpy array of Booleans of the same
# shape as a, where each slot of bool_idx tells
# whether that element of a is > 2. print(bool_idx) # Prints "[[False False]
# [ True True]
# [ True True]]" # We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx]) # Prints "[3 4 5 6]" # We can do all of the above in a single concise statement:
print(a[a > 2]) # Prints "[3 4 5 6]"

Datatypes

每个numpy数组都是由相同类型的元素组成的网格。Numpy提供了一组可以用来构造数组的大型数字数据类型。在创建数组时,Numpy尝试猜测数据类型,但是构造数组的函数通常还包含一个可选参数来显式指定数据类型。举个例子:

import numpy as np

x = np.array([1, 2])   # Let numpy choose the datatype
print(x.dtype) # Prints "int64" x = np.array([1.0, 2.0]) # Let numpy choose the datatype
print(x.dtype) # Prints "float64" x = np.array([1, 2], dtype=np.int64) # Force a particular datatype
print(x.dtype) # Prints "int64"

Array math

基本数学函数对数组进行elementwise操作,既可以作为操作符重载,也可以作为numpy模块中的函数:

import numpy as np

x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64) # Elementwise sum; both produce the array
# [[ 6.0 8.0]
# [10.0 12.0]]
print(x + y)
print(np.add(x, y)) # Elementwise difference; both produce the array
# [[-4.0 -4.0]
# [-4.0 -4.0]]
print(x - y)
print(np.subtract(x, y)) # Elementwise product; both produce the array
# [[ 5.0 12.0]
# [21.0 32.0]]
print(x * y)
print(np.multiply(x, y)) # Elementwise division; both produce the array
# [[ 0.2 0.33333333]
# [ 0.42857143 0.5 ]]
print(x / y)
print(np.divide(x, y)) # Elementwise square root; produces the array
# [[ 1. 1.41421356]
# [ 1.73205081 2. ]]
print(np.sqrt(x))

注意,与MATLAB不同,*是元素乘,而不是矩阵乘。我们用点函数来计算向量的内积,用一个向量乘以一个矩阵,再乘以矩阵。dot既可以作为numpy模块中的函数使用,也可以作为数组对象的实例方法:

import numpy as np

x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]]) v = np.array([9,10])
w = np.array([11, 12]) # Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w)) # Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v)) # Matrix / matrix product; both produce the rank 2 array
# [[19 22]
# [43 50]]
print(x.dot(y))
print(np.dot(x, y))

Numpy提供了许多有用的函数来执行数组上的计算;其中最有用的是sum:

import numpy as np

x = np.array([[1,2],[3,4]])

print(np.sum(x))  # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"

除了使用数组计算数学函数外,我们还经常需要对数组中的数据进行整形或以其他方式进行操作。这种运算最简单的例子是转置矩阵;要转置矩阵,只需使用数组对象的T属性:

import numpy as np

x = np.array([[1,2], [3,4]])
print(x) # Prints "[[1 2]
# [3 4]]"
print(x.T) # Prints "[[1 3]
# [2 4]]" # Note that taking the transpose of a rank 1 array does nothing:
v = np.array([1,2,3])
print(v) # Prints "[1 2 3]"
print(v.T) # Prints "[1 2 3]"

Broadcasting

广播是一种强大的机制,它允许numpy在执行算术运算时处理不同形状的数组。通常我们有一个更小的数组和一个更大的数组,我们希望多次使用更小的数组来对更大的数组执行一些操作。

例如,假设我们想给矩阵的每一行加上一个常数向量。我们可以这样做:

import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x) # Create an empty matrix with the same shape as x # Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):
y[i, :] = x[i, :] + v # Now y is the following
# [[ 2 2 4]
# [ 5 5 7]
# [ 8 8 10]
# [11 11 13]]
print(y)
import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x) # Create an empty matrix with the same shape as x # Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):
y[i, :] = x[i, :] + v # Now y is the following
# [[ 2 2 4]
# [ 5 5 7]
# [ 8 8 10]
# [11 11 13]]
print(y)

这可行;然而,当矩阵x非常大时,用Python计算显式循环可能会很慢。注意,将向量v添加到矩阵x的每一行中,等价于通过垂直叠加v的多个副本来形成矩阵vv,然后执行x和vv的元素求和。我们可以这样实现这个方法:

import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other
print(vv) # Prints "[[1 0 1]
# [1 0 1]
# [1 0 1]
# [1 0 1]]"
y = x + vv # Add x and vv elementwise
print(y) # Prints "[[ 2 2 4
# [ 5 5 7]
# [ 8 8 10]
# [11 11 13]]"

Numpy broadcast允许我们执行这个计算,而不需要实际创建v的多个副本。

import numpy as np

# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v # Add v to each row of x using broadcasting
print(y) # Prints "[[ 2 2 4]
# [ 5 5 7]
# [ 8 8 10]
# [11 11 13]]"

行y = x + v工作,即使x有形状(4,3)和v有形状(3,3),由于广播;这行的工作原理就像v实际上具有形状(4,3)一样,其中每一行都是v的副本,并按elementwise执行求和。

将两个数组一起广播遵循以下规则:

  1. 如果数组的秩不相同,则将较低秩数组的形状加上1,直到两个形状的长度相同为止。
  2. 如果两个数组在维度中大小相同,或者其中一个数组在该维度中大小为1,那么这两个数组在维度中是兼容的。
  3. 如果数组在所有维度上都兼容,则可以将它们一起广播。
  4. 广播之后,每个数组的行为就好像它的形状等于两个输入数组的形状的elementwise最大值。
  5. 在任何维度中,如果一个数组的大小为1,而另一个数组的大小大于1,那么第一个数组的行为就好像它是沿着该维度复制的

以下是广播的一些应用:

import numpy as np

# Compute outer product of vectors
v = np.array([1,2,3]) # v has shape (3,)
w = np.array([4,5]) # w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:
# [[ 4 5]
# [ 8 10]
# [12 15]]
print(np.reshape(v, (3, 1)) * w) # Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:
# [[2 4 6]
# [5 7 9]]
print(x + v) # Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:
# [[ 5 6 7]
# [ 9 10 11]]
print((x.T + w).T)
# Another solution is to reshape w to be a column vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
print(x + np.reshape(w, (2, 1))) # Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
# [[ 2 4 6]
# [ 8 10 12]]
print(x * 2)

广播通常使您的代码更简洁、更快,所以您应该尽可能地使用它。

SciPy

umpy提供了一个高性能的多维数组和基本工具来计算和操作这些数组。SciPy建立在此基础上,并提供了大量对numpy数组进行操作的函数,适用于不同类型的科学和工程应用程序。

Image operations

SciPy提供了一些处理图像的基本功能。例如,它具有将映像从磁盘读入numpy数组、将numpy数组作为映像写入磁盘以及调整映像大小的功能。下面是一个简单的例子,展示了这些功能:

from scipy.misc import imread, imsave, imresize

# Read an JPEG image into a numpy array
img = imread('assets/cat.jpg')
print(img.dtype, img.shape) # Prints "uint8 (400, 248, 3)" # We can tint the image by scaling each of the color channels
# by a different scalar constant. The image has shape (400, 248, 3);
# we multiply it by the array [1, 0.95, 0.9] of shape (3,);
# numpy broadcasting means that this leaves the red channel unchanged,
# and multiplies the green and blue channels by 0.95 and 0.9
# respectively.
img_tinted = img * [1, 0.95, 0.9] # Resize the tinted image to be 300 by 300 pixels.
img_tinted = imresize(img_tinted, (300, 300)) # Write the tinted image back to disk
imsave('assets/cat_tinted.jpg', img_tinted)

MATLAB files

scipy.io.loadmat和scipy.io.savemat允许您读取和编写MATLAB文件。

Distance between points

SciPy定义了一些有用的函数来计算点集之间的距离。

scipy.spatial.distance.pdist计算给定集合中所有对点之间的距离:

import numpy as np
from scipy.spatial.distance import pdist, squareform # Create the following array where each row is a point in 2D space:
# [[0 1]
# [1 0]
# [2 0]]
x = np.array([[0, 1], [1, 0], [2, 0]])
print(x) # Compute the Euclidean distance between all rows of x.
# d[i, j] is the Euclidean distance between x[i, :] and x[j, :],
# and d is the following array:
# [[ 0. 1.41421356 2.23606798]
# [ 1.41421356 0. 1. ]
# [ 2.23606798 1. 0. ]]
d = squareform(pdist(x, 'euclidean'))
print(d)

scipy.spatial.distance.cdist计算两组点之间所有对的距离;

Matplotlib

Matplotlib是一个绘图库。在本节中,将简要介绍matplotlib.pyplot模块,它提供了一个类似于MATLAB的绘图系统。

Plotting

matplotlib中最重要的函数是plot,它允许绘制2D数据。下面是一个简单的例子:

import numpy as np
import matplotlib.pyplot as plt # Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x) # Plot the points using matplotlib
plt.plot(x, y)
plt.show() # You must call plt.show() to make graphics appear.

只需做一点额外的工作,我们就可以轻松地同时绘制多条线,并添加标题、图例和轴标签:

import numpy as np
import matplotlib.pyplot as plt # Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x) # Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine', 'Cosine'])
plt.show()

Subplots

您可以使用subplot函数在同一图中绘制不同的东西。举个例子:

import numpy as np
import matplotlib.pyplot as plt # Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x) # Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1) # Make the first plot
plt.plot(x, y_sin)
plt.title('Sine') # Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine') # Show the figure.
plt.show()

Images

您可以使用imshow函数来显示图像。举个例子:

import numpy as np
from scipy.misc import imread, imresize
import matplotlib.pyplot as plt img = imread('assets/cat.jpg')
img_tinted = img * [1, 0.95, 0.9] # Show the original image
plt.subplot(1, 2, 1)
plt.imshow(img) # Show the tinted image
plt.subplot(1, 2, 2) # A slight gotcha with imshow is that it might give strange results
# if presented with data that is not uint8. To work around this, we
# explicitly cast the image to uint8 before displaying it.
plt.imshow(np.uint8(img_tinted))
plt.show()

Pytorch学习笔记(一)Numpy SciPy MatPlotlib Tutorial的更多相关文章

  1. Linux入门(10)——Ubuntu16.04使用pip3和pip安装numpy,scipy,matplotlib等第三方库

    安装Python3第三方库numpy,scipy,matplotlib: sudo apt install python3-pip pip3 install numpy pip3 install sc ...

  2. 在windows下python,pip,numpy,scipy,matplotlib的安装

    系统:win7(64bit) 如果只需要安装python,执行步骤一就可以了,不用管后面.如果还需要其它的库,则只需要执行第二步,第一步可省略(因为在安装anaconda的时间,python就自动装好 ...

  3. 吴裕雄--天生自然Numpy库学习笔记:NumPy Matplotlib

    Matplotlib 是 Python 的绘图库. 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案. 它也可以和图形工具包一起使用,如 PyQt 和 wxPython. W ...

  4. 莫烦pytorch学习笔记(一)——torch or numpy

    Q1:什么是神经网络? Q2:torch vs numpy Numpy:NumPy系统是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(neste ...

  5. 【pytorch】pytorch学习笔记(一)

    原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于p ...

  6. win7 64+python2.7.12安装numpy+scipy+matplotlib+scikit-learn

    python包下载网址 http://www.lfd.uci.edu/~gohlke/pythonlibs/ 1.已经安装python2.7.12,查看scripts里是否有pip.2.7.9版本以上 ...

  7. 【深度学习】Pytorch 学习笔记

    目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...

  8. mac安装numpy,scipy,matplotlib

      SaintKings-Mac-mini:~ saintking$ python Python ( , ::) [GCC Compatible Apple LLVM (clang-)] on dar ...

  9. [PyTorch 学习笔记] 1.3 张量操作与线性回归

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/linear_regression.py 张量的操作 拼 ...

随机推荐

  1. dig请求和回应中的参数解释

    ; <<>> DiG 9.9.5-3ubuntu0.6-Ubuntu <<>> baidu.com dig这个程序的版本号和要查询的域名 ;; glob ...

  2. elasticsearch6.x集群环境部署

    elasticsearch集群部署安装jdk chmod 755 jdk-8u161-linux-x64.tar.gztar -zxvf jdk-8u161-linux-x64.tar.gzcp jd ...

  3. 教你如何在Drcom下使用路由器上校园网(以广东工业大学、极路由1S HC5661A为例)

    免责声明: 在根据本教程进行实际操作时,如因您操作失误导致出现的一切意外,包括但不限于路由器变砖.故障.数据丢失等情况,概不负责: 该技术仅供学习交流,请勿将此技术应用于任何商业行为,所产生的法律责任 ...

  4. ABP之模块系统

    简介 ASP.NET Boilerplate提供了构建模块的基础结构,并将它们组合在一起以创建应用程序. 模块可以依赖于另一个模块. 通常,一个程序集被视为一个模块. 如果创建具有多个程序集的应用程序 ...

  5. [wiki] Unix like

    1. Unix的发展历史 2. 纵向的图 3. 来源: https://zh.wikipedia.org/wiki/类Unix系统 4. 中文版   数种“类UNIX操作系统”的相互关系图 类Unix ...

  6. 定时任务调度工作(学习记录 三)timer其他重要函数

    TimerTask的两个重要函数: 1.cancel() 作用: 取消当前TimerTask里的任务 演示: 先在继承了TimerTask的类中添加一个计时器,然后在run方法中合适的位置添加canc ...

  7. C#给字符串赋予字面值——字符串插入、转义序列的使用

    1.占位符.字符串插入 给字符串赋予字面值时,经常遇见在字符串中包含变量的情况,用连接符进行拼接.转换的方式比较麻烦.还容易出错.C#提供了较为便捷的处理方式,即‘占位符’,以及C#6的新功能‘插入字 ...

  8. Xshell报错“The remote SSH server rejected X11 forwarding request.”

    Xshell报错“The remote SSH server rejected X11 forwarding request.” 2012年12月17日 ⁄ Linux⁄ 共 218字 ⁄ 字号 小  ...

  9. Oracle篇 之 数据操作

    一.DML 数据操作语言(Data Manipulation Language) 1.insert insert into student values(1,'briup1',20,'Male'); ...

  10. Verilog语言实现并行(循环冗余码)CRC校验

    1 前言 (1)    什么是CRC校验? CRC即循环冗余校验码:是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定.循环冗余检查(CRC)是一种数据传输检错功能, ...