聚类——GMM
聚类——认识GMM算法
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
一、GMM概述
二、GMM算法步骤
三、具体推导参考文献
1. 李航. 统计学习方法[M]. 清华大学出版社, 2012.
2. Bishop C M. Pattern Recognition and Machine Learning (Information Science and Statistics)[M]. Springer-Verlag New York, Inc. 2006.
注:GMM数学公式推导用到了贝叶斯公式、条件期望公式、拉格朗日乘数法、极大似然估计、参数估计。概率论与数理统计的内容居多,事先应掌握概率论与数理统计基本内容。
四、总结
1. GMM算法中间参数估计部分用到了EM算法,EM算法分为两步:
(1)E步:求目标函数期望,更多的是求目标函数取对数之后的期望值。
(2)M步:使期望最大化。用到极大似然估计,拉格朗日乘数法,对参数求偏导,最终确定新的参数。
2.K-means,FCM与GMM算法参数估计的数学推导思路大体一致,都先确立目标函数,然后使目标函数最大化的参数取值就是迭代公式。
3.三个算法都需要事先指定k。K-means与FCM中的k指的是要聚的类的个数,GMM算法中的k指的是k个单高斯混合模型。
4.三个算法流程一致:
(1)通过一定的方法初始化参数(eg:随机,均值······)
(2)确立目标函数
(3)通过一定的方法使目标函数最大化,更新参数迭代公式(eg:EM,粒子群······)
(4)设置一定的终止条件,使算法终止。若不满足条件,转向(3)
聚类——GMM的更多相关文章
- 吴裕雄 python 机器学习——混合高斯聚类GMM模型
import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics ...
- MATLAB中“fitgmdist”的用法及其GMM聚类算法
MATLAB中“fitgmdist”的用法及其GMM聚类算法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 高斯混合模型的基本原理:聚类——GMM,MA ...
- 【转】GMM与K-means聚类效果实战
原地址: GMM与K-means聚类效果实战 备注 分析软件:python 数据已经分享在百度云:客户年消费数据 密码:lehv 该份数据中包含客户id和客户6种商品的年消费额,共有440个样本 正文 ...
- 概率图模型学习笔记:HMM、MEMM、CRF
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...
- 机器学习经典算法之EM
一.简介 EM 的英文是 Expectation Maximization,所以 EM 算法也叫最大期望算法. 我们先看一个简单的场景:假设你炒了一份菜,想要把它平均分到两个碟子里,该怎么分? 很少有 ...
- MATLAB高斯混合数据的生成
MATLAB高斯混合数据的生成 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 高斯混合模型的基本原理:聚类——GMM,MATLAB中GMM聚类算法:M ...
- 变分深度嵌入(Variational Deep Embedding, VaDE)
变分深度嵌入(Variational Deep Embedding, VaDE) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 这篇博文主要是对论文“ ...
- 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut
原文请戳:http://blog.csdn.net/abcjennifer/article/details/8170687 聚类算法是ML中一个重要分支,一般采用unsupervised learni ...
- sklearn聚类模型:基于密度的DBSCAN;基于混合高斯模型的GMM
1 sklearn聚类方法详解 2 对比不同聚类算法在不同数据集上的表现 3 用scikit-learn学习K-Means聚类 4 用scikit-learn学习DBSCAN聚类 (基于密度的聚类) ...
随机推荐
- 前端(各种demo)一:css实现三角形,css实现梯形,pop弹层,css伪类before,after使用,svg使用(持续更新中)
各种demo: 1.css实现正方形 思路:width为0:height为0:使用boder-width为正方形的边长的一半,不占任何字节:border-style为固体:border-color为正 ...
- 动手实现一个 LRU cache
前言 LRU 是 Least Recently Used 的简写,字面意思则是最近最少使用. 通常用于缓存的淘汰策略实现,由于缓存的内存非常宝贵,所以需要根据某种规则来剔除数据保证内存不被撑满. 如常 ...
- .NET Core中的数据保护组件
原文地址: PREVENTING INSECURE OBJECT REFERENCES IN ASP.NET CORE 2.0 作者: Tahir Naushad 背景介绍 在 OWASP(开放式 W ...
- Object类toString()
Object类是java所有类的始祖,在java中每个类都是由它扩展而来. toString()方法返回一个包含类名与内存地址的文本形式的字符串 即打印对象的时候便会调用此方法. 强烈建议为自定义的 ...
- Supervisor 为服务创建守护进程
今天需要再服务上部署一个.net 方面的项目:当时开启服务的命令只能在前台执行:使用nohub CMD &等放在后台开启服务都会宕机:所以搜寻了Supervisor 这个解决办法,为服务创建守 ...
- 痞子衡嵌入式:通用NOR接口标准(CFI-JESD68)及SLC Parallel NOR简介
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是CFI标准及SLC Parallel NOR. NOR Flash是嵌入式世界里最常见的存储器,常常内嵌在微控制器里(Parallel型 ...
- 关于setState的一些记录
在看React的官方文档的时候, 发现了这么一句话,State Updates May Be Asynchronous,于是查询了一波相关的资料, 最后归纳成以下3个问题 setState为什么要异步 ...
- Smobiler 4.4 更新预告 Part 2(Smobiler能让你在Visual Studio上开发APP)
Hello Everybody,在Smobiler 4.4中,也为大家带来了新增功能和插件(重点,敲黑板). 新增功能: 1, 企业认证用户可设置路由(即客户端可根据不同的IP地址访问不同的服务器组) ...
- WebLogic及其他
如何给WebLogic指定大小的内存? 在启动WebLogic的脚本中(位于所在Domian对应服务器目录下的startServerName),增加set MEM_ARGS= -Xms32m -Xmx ...
- C#调用Windows(8/10)自带的虚拟键盘
以下是调用代码: private const Int32 WM_SYSCOMMAND = 274; private const UInt32 SC_CLOSE = 61536; [DllImport( ...