Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking

2019-03-20 16:45:23

Paperhttps://arxiv.org/pdf/1812.06148.pdf

Code:(尚无)

背景与动机:

本文提出一种级联的 RPN 网络结合到 Siamese RPN 网络中,然后取得了更好的跟踪效果。本文的动机如下:
1). 正负样本的比例,不一致,导致 Siamese Network 的训练不够有效;大部分的负样本都是简单样本,对最终的结果贡献很小,所以,在出现相似物体的时候,经常会出现跟踪混淆;

2). Low-level spatial features 并没有充分的被探索;

3). One-stage Siamese RPN 采用 单个回归器进行物体的定位,但是实际上并没有很好的处理跟踪中物体的尺寸变换的问题。利用预先定义好的 Coarse anchor Box 不能很好的进行精确的定位;

于是,根据上述动机,作者引入 多级的 RPN 网络,来解决定位问题;同时选择 hard negative samples 来改善网络的鲁棒性。此外,作者还引入了多层特征的融合,得到了更好的特征表达。

网络结构

1. Siamese-RPN 的简介:

  详见其原始 paper:High performance visual tracking with siamese region proposal network

2. Cascaded RPN:

前人的方法大部分都忽略了 class imbalance 的问题,导致在出现相似性物体的时候,效果不佳。此外,他们也仅用 high-level semantic features 来进行跟踪,而很少考虑 multi-level feature。为了解决上述这两个问题,本文提出多阶段的跟踪方法,细节如下:

对于每一个阶段的 RPN,其利用 FTB 模块来融合来自第 l 个 convolutional layer 的特征 以及 high-level feature,融合后的特征可以用下面的公式进行表达:

其中 FTB 代表如下图所示的多特征融合模块。主要是对较低分辨率的图像利用 Deconvlutional layer 进行升分辨率处理,得到的特征卷积后,与另外一支进行元素集相加(element-wise summarize)得到最终的结果,细节见图 6。

对于,RPN-1 来说,

所以,stage l 中每一个 anchor 的分类得分 和 回归的偏执,计算如下:

我们用 Al 表示在阶段 l 的 anchor set。根据分类的得分,我们可以过滤出该集合中的样本,当其 negative confidence 大于预先设定的阈值时。然后,剩下的那些样本就构成了新的 anchor 集合 Al+1,并且用于训练 RPNl+1。此外,为了提供更好的初始化,我们优化了 Al+1 中 anchor 的 center location 以及 size,所以,产生了更加准确的定位。作者也提供了一个案例,来表明 BBox 的准确性提升。

RPNl 的损失函数 $L_{RPN_l}$ 包含分类损失 $L_{cls}$ 以及 回归损失 $L_{loc}$,其定义如下:

其中,$r_i^{l*}$ 表示 anchor i 和 gt 之间的真实距离。服从前人工作,作者也将 $r_i^{l*}$ 设置为 4d 的向量,如下所示:

其中,x, y, w, h 是 BBox 的中心点 及其 宽高。与常规的固定 anchor 不同,C-RPN 的 anchors 可以进行微调:

对于第一个阶段的 anchor,$x_a^1, y_a^1, w_a^1, h_a^1$ 是预先设定的。

【注】此处关于损失函数讲的不是特别清晰,关于回归损失函数的定义,可以参考 Faster RCNN

上述过程构成了所提出的级联 RPN。其最终的损失函数 $L_{CRPN}$ 就是各个 RPN 损失函数的和:

实验结果

==

论文笔记:Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking的更多相关文章

  1. 论文笔记:目标追踪-CVPR2014-Adaptive Color Attributes for Real-time Visual Tracking

    基于自适应颜色属性的目标追踪 Adaptive Color Attributes for Real-Time Visual Tracking 基于自适应颜色属性的实时视觉追踪 3月讲的第一篇论文,个人 ...

  2. 论文阅读笔记二十七:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(CVPR 2016)

    论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对 ...

  3. [论文理解] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 简介 Faster R-CNN是很经典的t ...

  4. 深度学习论文翻译解析(十三):Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    论文标题:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 标题翻译:基于区域提议(Regi ...

  5. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks论文理解

    一.创新点和解决的问题 创新点 设计Region Proposal Networks[RPN],利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search ...

  6. 目标检测(四)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    作者:Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun SPPnet.Fast R-CNN等目标检测算法已经大幅降低了目标检测网络的运行时间. ...

  7. 中文版 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 摘要 最先进的目标检测网络依靠区域提出算法 ...

  8. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(理解)

    0 - 背景 R-CNN中检测步骤分成很多步骤,fast-RCNN便基于此进行改进,将region proposals的特征提取融合成共享卷积层问题,但是,fast-RCNN仍然采用了selectiv ...

  9. Faster RCNN原理分析(二):Region Proposal Networks详解

    Faster RCNN原理分析(二):Region Proposal Networks详解 http://lib.csdn.net/article/deeplearning/61641 0814: A ...

随机推荐

  1. 使用Gadget 做usb鼠标键盘设备

    使用Gadget 做usb鼠标键盘设备 感谢TI社区提供的好帮助啊!http://e2e.ti.com/support/arm/sitara_arm/f/791/p/571771/2103409?pi ...

  2. 搭建docker私有仓库(https)

    1.修改openssl.cnf,支持IP地址方式,HTTPS访问在Redhat7或者Centos系统中,文件所在位置是/etc/pki/tls/openssl.cnf.在其中的[ v3_ca]部分,添 ...

  3. GCD的简单使用方法

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/like7xiaoben/article/details/25629365 /* 创建一个队列用来运行 ...

  4. spy-debugger 安装以及使用

    参考链接:https://github.com/wuchangming/spy-debugger

  5. IDEA使用技巧

    1,导入原Eclipse Web项目 由于使用 PowerDesign连接MySql时只能用32位 Jdk,原Eclipse项目依赖于64位Jdk,导致在eclipse打不开工程,把工程导入IDEA后 ...

  6. Unity shader之ColorMask

    Color Mask解释,见unity文档: ColorMask ColorMask RGB | A | 0 | any combination of R, G, B, A Set color cha ...

  7. Windows上IOCP Socket事件模型管理

     1.IOCP 2.使用IOCP 1)创建完成端口CreateIoCompletionPort: 2)向完成端口添加管理句柄与管理用户数据: 3)异步发送一个管理的事件请求: 4)开启工作线程来处理I ...

  8. 关于Aspose.Words插入表格单元格的高度问题的解决

    最近在工作中遇到客户要将PDF打印的文档插入的表格行高缩小.为解决这个问题,我百度了好长时间,让没有直接来说明这个问题的,我不清楚是我遇到的问题太low了,各位大神不屑一顾.终于我在几个家之所长,把问 ...

  9. laravel blog edit

    模板复制create的模板 主要修改的地方 <form action="{{ url('admin/article/'.$article->id) }}" method ...

  10. dlo,学习清单

    肥文自动机 模拟纵火 替罪羊 法法塔 ntt