MATLAB 均方根误差MSE、两图像的信噪比SNR、峰值信噪比PSNR、结构相似性SSIM
今天的作业是求两幅图像的MSE、SNR、PSNR、SSIM.代码如下:
clc;
close all;
X = imread('q1.tif');% 读取图像
Y=imread('q2.tif');
figure;% 展示图像
subplot(1, 3, 1); imshow(X); title('q1');
subplot(1, 3, 2); imshow(Y); title('q2');
% 使得图像每个像素值为浮点型
X = double(X);
Y = double(Y); A = Y-X;
B = X.*Y;
subplot(1,3,3);imshow(A);title('作差');
MSE = sum(A(:).*A(:))/numel(Y);% 均方根误差MSE,numel()函数返回矩阵元素个数
SNR = 10*log10(sum(X(:).*X(:))/MSE/numel(Y));%信噪比SNR
PSNR = 10*log10(255^2/MSE);% 峰值信噪比PSNR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%以下为结构相似度SSIM
ux=sum(X(:).*X(:))/numel(X);
uy=sum(Y(:).*Y(:))/numel(Y);
sigmoidx=sum(X(:).*X(:)-ux)/numel(X);
sigmoidy=sum(Y(:).*Y(:)-uy)/numel(Y);
sigmoidxy=sum(B(:).*B(:))/(numel(B)*ux*uy)-ux*uy;
SSIM=(2*ux*uy)*(2*sigmoidxy)/(ux*ux+uy*uy)/(sigmoidx*sigmoidx+sigmoidy*sigmoidy);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% display(MSE);%均方根误差MSE
display(SNR);%信噪比SNR
display(PSNR);%峰值信噪比PSNR
display(SSIM);%结构相似性SSIM
接下来,让我们看一下代码的输出。
MSE =153.6263 SNR =19.7617 PSNR =26.2661 SSIM =-1.5281e+26
根据观察,两幅图像可能来自于连拍,图片中的内容几乎完全一致。仅仅是对应的像素点产生了偏移。上图图三反应的是两幅图像作差以后的结果。根据均方根误差MSE,我们发现从数据上两幅图存在有巨大差异。这显然不符合我们的观察。作为图像质量评价指标,客观评价MSE与人眼的主观判断产生出入,这说明MSE并不是一个合适的指标。原因是:MSE指标的核心在于两幅图像相应像素点之间差值的平方和。这直接导致了该指标对于图像的空间分布没有“全局”认识,而只是局限于单纯的像素“个体”。
而SNR和PSNR,在本例中取得了较好的效果。不过,个人认为在高熵图像中容易失效,在具有足够多中心点的着色过的Vornoi图和其平移图像中,SNR和PSNR将会难有成效。
对于SSIM,SSIM综合考虑了两幅图像的均值、方差,以及他们的协方差,从而在本例中取得了非常好的效果。
2019-03-04
23:14:07
MATLAB 均方根误差MSE、两图像的信噪比SNR、峰值信噪比PSNR、结构相似性SSIM的更多相关文章
- matlab之原始处理图像几何变换
(一)图像几何变换理论知识 (1)图像的平移与比例 图像的平移很简单,平移前后的坐标分别为(x,y)和(x',y'),则满足的关系式为 x'= x +Tx: y'= y +Ty: 其中Tx与Ty分别为 ...
- Matlab提供了两种除法运算:左除(\)和右除(/)
Matlab提供了两种除法运算:左除(\)和右除(/).一般情况下,x=a\b是方程a*x =b的解,而x=b/a是方程x*a=b的解.例:a=[1 2 3; 4 2 6; 7 4 9]b ...
- matlab均方根误差
Matlab均方根误差的计算 http://blog.sina.com.cn/s/blog_6210f654010308kv.html
- [转]两种Sigma-Delta ADC SNR仿真方法
假设现有一组Sigma-Delta ADC输出序列,下面将介绍两种计算出相应SNR的方法.其中由cadence导出数据的CIW窗口命令为:ocPrint(?output "输出目录/输出文件 ...
- MATLAB解析PFM格式图像
http://www.p-chao.com/ja/2016-09-27/matlab%E8%A7%A3%E6%9E%90pfm%E6%A0%BC%E5%BC%8F%E5%9B%BE%E5%83%8F/ ...
- Matlab图像处理系列4———图像傅立叶变换与反变换
注:本系列来自于图像处理课程实验.用Matlab实现最主要的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内能够加工处理图像以外.我们还能够将图像变换到其它空间后进行处理.这些方法 ...
- matlab练习程序(图像球面化)
十一没什么事干,接着看图像算法. 这个球面化算法最初是在ps上的球面化滤镜中看到的,感觉挺有意思,就研究了一下. 算法的详细推导可以在这篇博客中找到,我比较懒,只在纸上推了一遍,就不在博客上编辑了. ...
- matlab各类数据l图像之间的转化
matlab各类数据图像之间的转化 rgb类型转化为二值的步骤例如以下: 1.採用命令im2double将rgb类型转化三维的double >> str='E:\programing\Ei ...
- matlab学习笔记,图像分块
clc; clear all; close all; I = imread('E:\matlab\files-images\tomsen512.jpg'); rs = size(I, 1);% 行数c ...
随机推荐
- Spring Session event事件分析
1. org.apache.catalina.session.StandardSession 这是servlet-api jar包中的一个类.是session接口的标准实现.当session创建的时候 ...
- postman自动化,测试脚本
//获取当前时间的时间戳 function getTimestamp(len=10) { // 如果需要自动获取则将此处代码放开 // var tmp = Date.parse( new Date() ...
- docker上部署rabbitmq
1.docker search rabbitmq 2.docker pull rabbitmq:3.6 3.docker run -d -p 5672:5672 -p 15672:15672 --na ...
- Kafka: Exactly-once Semantics
https://www.confluent.io/blog/enabling-exactly-kafka-streams/ https://cwiki.apache.org/confluence/di ...
- 工作中对git使用的总结
git与svn的区别,简单的说, svn在checkout后,如果不提交,那么版本库没有记录,如果修改的文件比较多,中间想回退几个文件,非常麻烦.git 是clone下来代码和记录,不提交 ...
- Operating Systems (COMP2006)
Operating Systems (COMP2006) 1st Semester 2019Page 1, CRICOS Number: 00301JOperating Systems (COMP20 ...
- python基础5 while循环
一.while循环: while 条件: 代码块 例: n=0 while n<10: print(n) n=n+1 #n自加1 ,满足n<10,继续循环 输出结果: 1 2 3 4 ...
- boost::filesystem总结
boost::filesystem是Boost C++ Libraries中的一个模块,主要作用是处理文件(Files)和目录(Directories).该模块提供的类boost::filesyste ...
- 美团笔试(web前端)
分为3部分: 1.逻辑推理.行测.找规律: 2.html css javascript的简单的选择题,以及数据结构,操作系统方面的知识: 3.两道编程题,第一道题关于竞赛报名,有限制的分组,输入N和M ...
- 20175211 2017-2018-2 《Java程序设计》第六周学习记录(2)
目录 1.File类 2.FilenameFilter接口 3.输入输出流 4.使用Scanner解析文件 参考资料 <Java 2实用教程>第10章 输入.输出流 1.File类 常用方 ...