BZOJ 2039: [2009国家集训队]employ人员雇佣
2039: [2009国家集训队]employ人员雇佣
Time Limit: 20 Sec Memory Limit: 259 MB
Submit: 1369 Solved: 667
[Submit][Status][Discuss]
Description
作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司。这些经理相互之间合作有一个贡献指数,(我们用Ei,j表示i经理对j经理的了解程度),即当经理i和经理j同时被雇佣时,经理i会对经理j做出贡献,使得所赚得的利润增加Ei,j。当然,雇佣每一个经理都需要花费一定的金钱Ai,对于一些经理可能他做出的贡献不值得他的花费,那么作为一个聪明的人,小L当然不会雇佣他。 然而,那些没有被雇佣的人会被竞争对手所雇佣,这个时候那些人会对你雇佣的经理的工作造成影响,使得所赚得的利润减少Ei,j(注意:这里的Ei,j与上面的Ei,j 是同一个)。 作为一个效率优先的人,小L想雇佣一些人使得净利润最大。你可以帮助小L解决这个问题吗?
Input
第一行有一个整数N<=1000表示经理的个数 第二行有N个整数Ai表示雇佣每个经理需要花费的金钱 接下来的N行中一行包含N个数,表示Ei,j,即经理i对经理j的了解程度。(输入满足Ei,j=Ej,i)
Output
第一行包含一个整数,即所求出的最大值。
Sample Input
3 5 100
0 6 1
6 0 2
1 2 0
Sample Output
【数据规模和约定】
20%的数据中N<=10
50%的数据中N<=100
100%的数据中 N<=1000, Ei,j<=maxlongint, Ai<=maxlongint
HINT
Source
建图求最小割:
假设一开始获得了所有的Wij,ans = ΣWij。
加入使用一个经理,产生代价是Costi,从源点向该点连Costi的边。
两个经理之间互相影响,如果在两人之间断开,及选取两人中的一个,那么将失去一开始得到的Wij,并且还会损失Wij的竞争代价,所以连边2*Wij。
我们也可以直接选择放弃一个经理,失去所有其本算在答案中的贡献,即ΣWij,其中j=1..n。
最终ans - 最小割就是答案。
#include <cstdio>
#include <cstring> const int siz = ;
const int inf = ; int n; int tot;
int s, t;
int hd[siz];
int to[siz];
int fl[siz];
int nt[siz]; inline void add(int u, int v, int f)
{
// printf("add %d %d %d\n", u, v, f);
nt[tot] = hd[u]; to[tot] = v; fl[tot] = f; hd[u] = tot++;
nt[tot] = hd[v]; to[tot] = u; fl[tot] = ; hd[v] = tot++;
} int dep[siz]; inline bool bfs(void)
{
static int que[siz];
static int head, tail; memset(dep, , sizeof(dep));
dep[que[head = ] = s] = tail = ; while (head != tail)
{
int u = que[head++], v;
for (int i = hd[u]; ~i; i = nt[i])
if (fl[i] && !dep[v = to[i]])
dep[que[tail++] = v] = dep[u] + ;
} return dep[t];
} int cur[siz]; inline int min(int a, int b)
{
return a < b ? a : b;
} int dfs(int u, int f)
{
if (u == t || !f)
return f; int used = , flow, v; for (int i = hd[u]; ~i; i = nt[i])
if (fl[i] && dep[v = to[i]] == dep[u] + )
{
flow = dfs(v, min(f - used, fl[i]));
used += flow;
fl[i] -= flow;
fl[i ^ ] += flow;
if (used == f)
return f;
if (fl[i])
cur[u] = i;
} if (!used)
dep[u] = ; return used;
} inline int maxFlow(void)
{
int maxFlow = , newFlow; while (bfs())
{
for (int i = s; i <= t; ++i)
cur[i] = hd[i]; while (newFlow = dfs(s, inf))
maxFlow += newFlow;
} return maxFlow;
} int ans;
int sum; signed main(void)
{
scanf("%d", &n); s = , t = n + ; memset(hd, -, sizeof(hd)); for (int i = , x; i <= n; ++i)
scanf("%d", &x), add(s, i, x); for (int i = ; i <= n; ++i)
{
sum = ; for (int j = ; j <= n; ++j)
{
int x; scanf("%d", &x);
ans += x;
sum += x;
if (i != j)
add(i, j, x << );
} add(i, t, sum);
} printf("%d\n", ans - maxFlow());
}
@Author: YouSiki
BZOJ 2039: [2009国家集训队]employ人员雇佣的更多相关文章
- BZOJ 2039 [2009国家集训队]employ人员雇佣 网络流
链接 BZOJ 2039 题解 这题建图好神,自己瞎搞了半天,最后不得不求教了企鹅学长的博客,,,,发现建图太神了!! s向每个人连sum(e[i][x]) 的边,每个人向T连a[i]的边.两两人之间 ...
- bzoj 2039 [2009国家集训队]employ人员雇佣——二元关系
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2039 用最小割看.对于一组关系 i , j ,如果都选,收益 2*Ei,j,可以看作0,作为 ...
- bzoj 2039: [2009国家集训队]employ人员雇佣【最小割】
一开始在https://www.cnblogs.com/lokiii/p/10770919.html基础上连(i,j,b[i][j])建了个极丑的图T掉了--把dinic换成isap勉强能卡过 首先因 ...
- 【BZOJ 2039】 2039: [2009国家集训队]employ人员雇佣 (最小割)
2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1511 Solved: 728 Descri ...
- 2039: [2009国家集训队]employ人员雇佣
任意门 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献指数,(我们用Ei,j表示i经理对j经理的了解程度),即 ...
- BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割
BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作 ...
- 【BZOJ2039】[2009国家集训队]employ人员雇佣 最小割
[BZOJ2039][2009国家集训队]employ人员雇佣 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献 ...
- BZOJ 2039:[2009国家集训队]employ人员雇佣(最小割)
http://www.lydsy.com/JudgeOnline/problem.php?id=2039 题意:中文题意. 思路:一开始想着和之前做的最大权闭合图有点像,但是如果把边全部当成点的话,那 ...
- BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)
题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...
随机推荐
- php简单实现socket通信
socket通信的原理在这里就不说了,它的用途还是比较广泛的,我们可以使用socket来做一个API接口出来,也可以使用socket来实现两个程序之间的通信,我们来研究一下在php里面如何实现sock ...
- Eclipse安装Spring-tool-suite
目录结构: // contents structure [-] 在Eclipse上安装Spring-tool-suite的方法有那些 如何查看自己的Eclipse版本 如何知道自己的Eclipse对应 ...
- SharePoint 2013 通过JavaScript实现列表标题列宽度可拖动
前言 最近有个新需求,用户希望标题栏可以拖动宽度,其实觉得没什么用,既然用户要了又推不掉,就勉为其难实现一下吧. 其实原理比较简单,就是利用JavaScript对标题栏进行宽度控制,然后从网上搜了一下 ...
- Android 弱引用和软引用
软引用 和 弱引用 1. SoftReference<T>:软引用-->当虚拟机内存不足时,将会回收它指向的对象:需要获取对象时,可以调用get方法. 2. WeakRefere ...
- Andriod 自定义控件之音频条
今天我们实现一个直接继承于View的全新控件.大家都知道音乐播放器吧,在点击一首歌进行播放时,通常会有一块区域用于显示音频条,我们今天就来学习下,播放器音频条的实现. 首先我们还是先定义一个类,直接继 ...
- Listview的Item中有CheckBox、Button等的焦点处理
ListView的item布局中有CheckBox.Button等会获取焦点的控件会抢走焦点,造成ListView的item点击事件相应不了. 解决方法:控件设置 android:clickable= ...
- iOS UIApplication sharedapplication用法
应用中打开其他应用 我们来讨论一下,在iOS开发中,如何实现从app1打开app2. 基本的思路就是,可以为app2定义一个URL,在app1中通过打开这个URL来打开app2,在此过程中,可以传送一 ...
- 【译】Spring 4 + Hibernate 4 + Mysql + Maven集成例子(注解 + XML)
前言 译文链接:http://websystique.com/spring/spring4-hibernate4-mysql-maven-integration-example-using-annot ...
- spring加载配置文件
spring加载配置文件 1.把applicationContext.xml直接放在WEB-INF/classes下,spring会采用默认的加载方式2.采用在web.xml中配置ContextLoa ...
- iOS系列 基础篇 07 Action动作和输出口
iOS系列 基础篇 07 Action动作和输出口 目录: 1. 前言及案例说明 2. 什么是动作? 3. 什么是输出口? 4. 实战 5. 结尾 1. 前言及案例说明 上篇内容我们学习了标签和按钮 ...