1. 写在前面

Flink被誉为第四代大数据计算引擎组件,即可以用作基于离线分布式计算,也可以应用于实时计算。Flink的核心是转化为流进行计算。Flink三个核心:Source,Transformation,Sink。其中Source即为Flink计算的数据源,Transformation即为进行分布式流式计算的算子,也是计算的核心,Sink即为计算后的数据输出端。Flink Source原生支持包括Kafka,ES,RabbitMQ等一些通用的消息队列组件或基于文本的高性能非关系型数据库。而Flink Sink写原生也只支持类似Redis,Kafka,ES,RabbitMQ等一些通用的消息队列组件或基于文本的高性能非关系型数据库。而对于写入关系型数据库或Flink不支持的组件中,需要借助RichSourceFunction去实现,但这部分性能是比原生的差些,虽然Flink不建议这么做,但在大数据处理过程中,由于业务或技术架构的复杂性,有些特定的场景还是需要这样做,本篇博客就是介绍如何通过Flink RichSourceFunction来写关系型数据库,这里以写mysql为例。

2. 引入依赖的jar包

flink基础包

flink-jdbc包

mysql-jdbc包

3. 继承RichSourceFunction包将jdbc封装读mysql

package com.run;

import java.sql.DriverManager;
import java.sql.ResultSet; import org.apache.flink.api.java.tuple.Tuple10;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction; import com.mysql.jdbc.Connection;
import com.mysql.jdbc.PreparedStatement; public class Flink2JdbcReader extends
RichSourceFunction<Tuple10<String, String, String, String, String, String, String, String, String, String>> {
private static final long serialVersionUID = 3334654984018091675L; private Connection connect = null;
private PreparedStatement ps = null; /*
* (non-Javadoc)
*
* @see org.apache.flink.api.common.functions.AbstractRichFunction#open(org.
* apache.flink.configuration.Configuration) to use open database connect
*/
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
Class.forName("com.mysql.jdbc.Driver");
connect = (Connection) DriverManager.getConnection("jdbc:mysql://192.168.21.11:3306", "root", "flink");
ps = (PreparedStatement) connect
.prepareStatement("select col1,col2,col3,col4,col5,col6,col7,col8,col9,col10 from flink.test_tb");
} /*
* (non-Javadoc)
*
* @see
* org.apache.flink.streaming.api.functions.source.SourceFunction#run(org.
* apache.flink.streaming.api.functions.source.SourceFunction.SourceContext)
* to use excuted sql and return result
*/
@Override
public void run(
SourceContext<Tuple10<String, String, String, String, String, String, String, String, String, String>> collect)
throws Exception {
ResultSet resultSet = ps.executeQuery();
while (resultSet.next()) {
Tuple10<String, String, String, String, String, String, String, String, String, String> tuple = new Tuple10<String, String, String, String, String, String, String, String, String, String>();
tuple.setFields(resultSet.getString(1), resultSet.getString(2), resultSet.getString(3),
resultSet.getString(4), resultSet.getString(5), resultSet.getString(6), resultSet.getString(7),
resultSet.getString(8), resultSet.getString(9), resultSet.getString(10));
collect.collect(tuple);
} } /*
* (non-Javadoc)
*
* @see
* org.apache.flink.streaming.api.functions.source.SourceFunction#cancel()
* colse database connect
*/
@Override
public void cancel() {
try {
super.close();
if (connect != null) {
connect.close();
}
if (ps != null) {
ps.close();
}
} catch (Exception e) {
e.printStackTrace();
} } }

4. 继承RichSourceFunction包将jdbc封装写mysql

package com.run;

import java.sql.DriverManager;

import org.apache.flink.api.java.tuple.Tuple10;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction; import com.mysql.jdbc.Connection;
import com.mysql.jdbc.PreparedStatement; public class Flink2JdbcWriter extends
RichSinkFunction<Tuple10<String, String, String, String, String, String, String, String, String, String>> {
private static final long serialVersionUID = -8930276689109741501L; private Connection connect = null;
private PreparedStatement ps = null; /*
* (non-Javadoc)
*
* @see org.apache.flink.api.common.functions.AbstractRichFunction#open(org.
* apache.flink.configuration.Configuration) get database connect
*/
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
Class.forName("com.mysql.jdbc.Driver");
connect = (Connection) DriverManager.getConnection("jdbc:mysql://192.168.21.11:3306", "root", "flink");
ps = (PreparedStatement) connect.prepareStatement("insert into flink.test_tb1 values (?,?,?,?,?,?,?,?,?,?)");
} /*
* (non-Javadoc)
*
* @see
* org.apache.flink.streaming.api.functions.sink.SinkFunction#invoke(java.
* lang.Object,
* org.apache.flink.streaming.api.functions.sink.SinkFunction.Context) read
* data from flink DataSet to database
*/
@Override
public void invoke(Tuple10<String, String, String, String, String, String, String, String, String, String> value,
Context context) throws Exception {
ps.setString(1, value.f0);
ps.setString(2, value.f1);
ps.setString(3, value.f2);
ps.setString(4, value.f3);
ps.setString(5, value.f4);
ps.setString(6, value.f5);
ps.setString(7, value.f6);
ps.setString(8, value.f7);
ps.setString(9, value.f8);
ps.setString(10, value.f9);
ps.executeUpdate();
} /*
* (non-Javadoc)
*
* @see org.apache.flink.api.common.functions.AbstractRichFunction#close()
* close database connect
*/
@Override
public void close() throws Exception {
try {
super.close();
if (connect != null) {
connect.close();
}
if (ps != null) {
ps.close();
}
} catch (Exception e) {
e.printStackTrace();
}
}
}

4. 代码解释

对于Flink2JdbcReader的读

里面有三个方法open,run,cancel,其中open方法是建立与关系型数据库的链接,这里其实就是普通的jdbc链接及mysql的地址,端口,库等信息。run方法是读取mysql数据转化为Flink独有的Tuple集合类型,可以根据代码看出其中的规律和Tuple8,Tuple9,Tuple10代表什么含义。cancel就很简单了关闭数据库连接

对于Flink2JdbcWriter的写

里面有三个方法open,invoke,close,其中open方法是建立与关系型数据库的链接,这里其实就是普通的jdbc链接及mysql的地址,端口,库等信息。invoke方法是将flink的数据类型插入到mysql,这里的写法与在web程序中写jdbc插入数据不太一样,因为flink独有的Tuple,可以根据代码看出其中的规律和Tuple8,Tuple9,Tuple10代表什么含义。close关闭数据库连接

5. 测试:读mysql数据并继续写入mysql

package com.run;

import java.util.Date;

import org.apache.flink.api.java.tuple.Tuple10;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; public class FlinkReadDbWriterDb {
public static void main(String[] args) throws Exception {。
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple10<String, String, String, String, String, String, String, String, String, String>> dataStream = env
.addSource(new Flink2JdbcReader()); // tranfomat dataStream.addSink(new Flink2JdbcWriter());
env.execute("Flink cost DB data to write Database"); }
}

6. 总结

从测试代码中可以很清晰的看出Flink的逻辑:Source->Transformation->Sink,可以在addSource到addSink之间加入我们的业务逻辑算子。同时这里必须注意env.execute("Flink cost DB data to write Database");这个必须有而且必须要放到结尾,否则整个代码是不会执行的,至于为什么在后续的博客会讲

Flink RichSourceFunction应用,读关系型数据(mysql)数据写入关系型数据库(mysql)的更多相关文章

  1. MYSQL添加新用户 MYSQL为用户创建数据库 MYSQL为新用户分配权限

    1.新建用户 //登录MYSQL @>mysql -u root -p @>密码 //创建用户 mysql> insert into mysql.user(Host,User,Pas ...

  2. ODP方式,大批量数据写入ORACLE数据库

    项目中在同步数据的时候,需要把获得的数据DataTable,写入oracle数据库 因为System.Data.OracleClient写入方式写入大批量数据特别慢,改用Oracle.DataAcce ...

  3. MySQL常用命令(数据库,表相关的命令)

    数据库相关命令 显示数据库列表 mysql> SHOW  DATABASES; 创建数据库 mysql> CREATE  DATABASE  库名; 如下,创建一个名为crashcours ...

  4. MySQL(一) -- MySQL学习路线、数据库的基础、关系型数据库、关键字说明、SQL、MySQL数据库、MySQL服务器对象、SQL的基本操作、库操作、表操作、数据操作、中文数据问题、 校对集问题、web乱码问题

    1 MySQL学习路线 基础阶段:MySQL数据库的基本操作(增删改查),以及一些高级操作(视图.触发器.函数.存储过程等). 优化阶段:如何提高数据库的效率,如索引,分表等. 部署阶段:如何搭建真实 ...

  5. Hadoop生态组件Hive,Sqoop安装及Sqoop从HDFS/hive抽取数据到关系型数据库Mysql

    一般Hive依赖关系型数据库Mysql,故先安装Mysql $: yum install mysql-server mysql-client [yum安装] $: /etc/init.d/mysqld ...

  6. Python3爬虫(九) 数据存储之关系型数据库MySQL

    Infi-chu: http://www.cnblogs.com/Infi-chu/ 关系型数据库关系型数据库是基于关系模型的数据库,而关系模型是通过二维表来保存的,所以关系型数据库的存储方式就是行列 ...

  7. Flink 实践教程 - 入门(4):读取 MySQL 数据写入到 ES

    ​作者:腾讯云流计算 Oceanus 团队 流计算 Oceanus 简介 流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发.无缝连接. ...

  8. 【搜索引擎】Solr最新安装以及通过关系型数据库(MySQL,Oracle,PostgreSQL)导入数据

    版本号 最新的solr版本 : Solr 8.1.1下载地址:https://lucene.apache.org/solr/downloads.html solr-8.1.0.tgz for Linu ...

  9. 【大数据应用技术】作业九|安装关系型数据库MySQL 安装大数据处理框架Hadoop

    本次作业的要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3161 1.安装MySql 按ctrl+alt+t打开终端窗口,安 ...

随机推荐

  1. C++11 std::move和std::forward

    下文先从C++11引入的几个规则,如引用折叠.右值引用的特殊类型推断规则.static_cast的扩展功能说起,然后通过例子解析std::move和std::forward的推导解析过程,说明std: ...

  2. 2018-2019 2 20175230《Java程序设计》第九周学习总结

    <Java程序设计>第九周学习总结 主要内容 MySQL数据库管理系统 1.下载 2.安装 启动MySQL数据库服务器 1.启动 2.root用户 MySQL客户端管理工具 建立连接 建立 ...

  3. java day01记录

    详细记录见本地基础培训资料 一.数据类型 /* 数据类型:Java是一种强类型语言,针对每一种数据都给出了明确的数据类型. 数据类型分类: A:基本数据类型 B:引用数据类型(类,接口,数组) 基本数 ...

  4. python的数据类型及运用

    int: 主要方法:a.bit.length()———将a转化为二进制的最小位数: bool: false/True str——>bool: s='空'——>false s=“非空”——& ...

  5. Jenkins_安装

    1.下载war包 wget -c -O ./jenkins.war http://mirrors.jenkins.io/war-stable/latest/jenkins.war 2.启动下载好的wa ...

  6. google搜索指南

    常用搜索技巧 搜索社交媒体@ @twitter 搜索特定价格$ $400 搜素标签# #tag 排除特定词,在词前加减号- -except 搜索完全匹配词,加双引号"" " ...

  7. 装饰器模式-Decorator(Java实现)

    装饰器模式-Decorator(Java实现) 装饰器模式允许向一个现有的对象添加新的功能, 同时又不改变其结构. 其中 "现有对象"在本文中是StringDisplay类. 添加 ...

  8. Python的一些高级特性以及反序列化漏洞

    0x01 简述 文章主要记录一下python高级特性以及安全相关的问题 python作为脚本语言,其作为高级语言是由c语言开发的,关于python的编译和链接可以看向这里https://github. ...

  9. Codeforces Round #541 (Div. 2)题解

    不知道该更些什么 随便写点东西吧 https://codeforces.com/contest/1131 ABC 太热了不写了 D 把相等的用并查集缩在一起 如果$ x<y$则从$ x$往$y$ ...

  10. 记一次Java动态代理实践【首发自高可用架构公众号】

    1. 背景 最近在做数据库(MySQL)方面的升级改造.现状是数据库同时被多个应用直连,存在了一些问题: 有大量的重复代码,维护成本较高,也不优雅: 出现SQL语句质量的问题无法很快定位到是哪个应用导 ...