转载的文章,觉得写的比较好

讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来:

  • 哈希存储引擎  是哈希表的持久化实现,支持增、删、改以及随机读取操作,但不支持顺序扫描,对应的存储系统为key-value存储系统。对于key-value的插入以及查询,哈希表的复杂度都是O(1),明显比树的操作O(n)快,如果不需要有序的遍历数据,哈希表就是your Mr.Right
  • B树存储引擎是B树(关于B树的由来,数据结构以及应用场景可以看之前一篇博文)的持久化实现,不仅支持单条记录的增、删、读、改操作,还支持顺序扫描(B+树的叶子节点之间的指针),对应的存储系统就是关系数据库(Mysql等)。
  • LSM树(Log-Structured Merge Tree)存储引擎和B树存储引擎一样,同样支持增、删、读、改、顺序扫描操作。而且通过批量存储技术规避磁盘随机写入问题。当然凡事有利有弊,LSM树和B+树相比,LSM树牺牲了部分读性能,用来大幅提高写性能。

通过以上的分析,应该知道LSM树的由来了,LSM树的设计思想非常朴素:将对数据的修改增量保持在内存中,达到指定的大小限制后将这些修改操作批量写入磁盘,不过读取的时候稍微麻烦,需要合并磁盘中历史数据和内存中最近修改操作,所以写入性能大大提升,读取时可能需要先看是否命中内存,否则需要访问较多的磁盘文件。极端的说,基于LSM树实现的HBase的写性能比Mysql高了一个数量级,读性能低了一个数量级。

LSM树原理把一棵大树拆分成N棵小树,它首先写入内存中,随着小树越来越大,内存中的小树会flush到磁盘中,磁盘中的树定期可以做merge操作,合并成一棵大树,以优化读性能

以上这些大概就是HBase存储的设计主要思想,这里分别对应说明下:

  • 因为小树先写到内存中,为了防止内存数据丢失,写内存的同时需要暂时持久化到磁盘,对应了HBase的MemStore和HLog
  • MemStore上的树达到一定大小之后,需要flush到HRegion磁盘中(一般是Hadoop DataNode),这样MemStore就变成了DataNode上的磁盘文件StoreFile,定期HRegionServer对DataNode的数据做merge操作,彻底删除无效空间,多棵小树在这个时机合并成大树,来增强读性能。

关于LSM Tree,对于最简单的二层LSM Tree而言,内存中的数据和磁盘你中的数据merge操作,如下图

lsm tree,理论上,可以是内存中树的一部分和磁盘中第一层树做merge,对于磁盘中的树直接做update操作有可能会破坏物理block的连续性,但是实际应用中,一般lsm有多层,当磁盘中的小树合并成一个大树的时候,可以重新排好顺序,使得block连续,优化读性能。

hbase在实现中,是把整个内存在一定阈值后,flush到disk中,形成一个file,这个file的存储也就是一个小的B+树,因为hbase一般是部署在hdfs上,hdfs不支持对文件的update操作,所以hbase这么整体内存flush,而不是和磁盘中的小树merge update,这个设计也就能讲通了。内存flush到磁盘上的小树,定期也会合并成一个大树。整体上hbase就是用了lsm tree的思路。

HBase总结 LSM理解的更多相关文章

  1. sstable, bigtable,leveldb,cassandra,hbase的lsm基础

    先看懂文献1和2 1. 先了解sstable.SSTable: Sorted String Table [2] [10] WiscKey:  类似myisam, key value分离, 根据ssd优 ...

  2. <HBase><读写><LSM>

    Overview HBase中的一个big table,首先会按行划分成一些region(这些region之间是有序的,由startkey保证),每个region分配到不同的节点进行存储.因此,reg ...

  3. 快速理解 Phoenix : SQL on HBASE

    转自:http://blog.csdn.net/colorant/article/details/8645081 ==是什么 == 目标Scope EasyStandard SQL access on ...

  4. hbase概念

    1. 概述(扯淡~) HBase是一帮家伙看了Google发布的一片名为“BigTable”的论文以后,犹如醍醐灌顶,进而“山寨”出来的一套系统. 由此可见: 1. 几乎所有的HBase中的理念,都可 ...

  5. HBase概念及表格设计

    HBase概念及表格设计 1. 概述(扯淡~) HBase是一帮家伙看了Google发布的一片名为“BigTable”的论文以后,犹如醍醐灌顶,进而“山寨”出来的一套系统. 由此可见: 1. 几乎所有 ...

  6. HBase写请求分析

    HBase作为分布式NoSQL数据库系统,不单支持宽列表.而且对于随机读写来说也具有较高的性能.在高性能的随机读写事务的同一时候.HBase也能保持事务的一致性. 眼下HBase仅仅支持行级别的事务一 ...

  7. [Spark] 04 - HBase

    BHase基本知识 基本概念 自我介绍 HBase是一个分布式的.面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”. ...

  8. 【转帖】LSM树 和 TSM存储引擎 简介

    LSM树 和 TSM存储引擎 简介 2019-03-08 11:45:23 长烟慢慢 阅读数 461  收藏 更多 分类专栏: 时序数据库   版权声明:本文为博主原创文章,遵循CC 4.0 BY-S ...

  9. HBase原理 – 分布式系统中snapshot是怎么玩的?(转载)

    snapshot(快照)基础原理 snapshot是很多存储系统和数据库系统都支持的功能.一个snapshot是一个全部文件系统.或者某个目录在某一时刻的镜像.实现数据文件镜像最简单粗暴的方式是加锁拷 ...

随机推荐

  1. nginx 80 端口 部署多个Web

    1.修改默认nginx.conf 文件 加入 include /usr/www/ngconfs/*.conf; 读取ngconfs文件下所有 *.conf文件 2.ngconfs 下多个文件创建 第二 ...

  2. nginx实现https网站设置

    一.HTTPS简介 1.https简介 HTTPS其实是有两部分组成:HTTP + SSL / TLS,也就是在HTTP上又加了一层处理加密信息的模块.服务端和客户端的信息传输都会通过TLS进行加密, ...

  3. 数据分析---《Python for Data Analysis》学习笔记【02】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  4. 整理CSS选择符

    1.星号选择器 ;; } 星号选择器将匹配页面里的每一个元素.很多开发者使用这个技巧将外边距和内边距重置为零.虽然在快速测试时这确实很好用,但我建议你永远不要再生产代码中使用它.它给浏览器带来大量不必 ...

  5. git的git bash使用

    一.git配置 在你使用git之前,需要先进行配置,即要报名号,否则不能提交代码 $ git config --global user.name # 你是谁 $ git config --global ...

  6. 一张图认识Python(附基本语法总结)

    一张图带你了解Python,更快入门, Python基础语法总结: 1.Python标识符 在 Python 里,标识符有字母.数字.下划线组成. 在 Python 中,所有标识符可以包括英文.数字以 ...

  7. 速查mysql数据大小

    速查mysql数据大小 # 1.查看所有数据库大小 mysql> select concat(round(sum(DATA_LENGTH/1024/1024),2),'MB') as data ...

  8. 金融量化分析【day112】:股票数据分析Tushare2

    目录 1.使用tushare包获取某股票的历史行情数据 2.使用pandas包计算该股票历史数据的5日局限和60日均线 3.matplotlib包可视化历史数据的收盘价和历史均线 4.分析输出所有金叉 ...

  9. kubernetes云平台管理实战: 集群部署(一)

    一.环境规划 1.架构拓扑图 2.主机规划 3.软件版本 [root@k8s-master ~]# cat /etc/redhat-release CentOS Linux release 7.4.1 ...

  10. golang命令行库cobra使用

    github地址:https://github.com/spf13/cobra Cobra功能 简单子命令cli 如  kubectl verion    kubectl get 自动识别-h,--h ...