BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)
DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合,使得集合内的点两两之间没有边。
直接状压。设\(f[s]\)表示\(s\)集合内的点是否满足两两之间没有边,\(g[s]\)表示最少可以将\(s\)划分为几个集合使得集合内两两没有边。
那么如果\(f[s']=1\ (s'\in s)\),\(g[s]=\min(g[s],\ g[s\ \text{xor}\ s']+1)\)。
复杂度\(O(m2^n+3^n)\)。
这么做不需要考虑给边定向啊= =
另一个这样应用\(Dilworth\)定理的好像是导弹拦截问题?
所以这题猜个结论之后,不和BZOJ4145一样吗=v=
//1112kb 728ms
#include <cstdio>
#include <cstring>
#include <algorithm>
#define lb(x) (x&-x)
const int N=15,M=(1<<N)+1;
int g[M],id[233],ref[M];
bool mp[N][N],f[M];
int main()
{
char s1[3],s2[3];
memset(id,0xff,sizeof id);
int n=0,m; scanf("%d",&m);
for(int p1,p2; m--; )
{
scanf("%s%s",s1,s2);
if(id[p1=s1[0]]==-1) id[p1]=n++;
if(id[p2=s2[0]]==-1) id[p2]=n++;
mp[id[p1]][id[p2]]=1, mp[id[p2]][id[p1]]=1;
}
int lim=(1<<n)-1;
for(int i=0; i<n; ++i) ref[1<<i]=i;
for(int s=0; s<=lim; ++s)
{
f[s]=1;
for(int s1=s; s1&&f[s]; s1^=lb(s1))
for(int s2=s,i=ref[lb(s1)]; s2; s2^=lb(s2))
if(mp[i][ref[lb(s2)]]) {f[s]=0; break;}
}
g[0]=0;
for(int s=1; s<=lim; ++s)
{
int tmp=1<<30;
for(int ss=s; ss; ss=(ss-1)&s)
if(f[ss]) tmp=std::min(tmp,g[s^ss]+1);
g[s]=tmp;
}
printf("%d\n",g[lim]-2);
return 0;
}
BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)的更多相关文章
- [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】
题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...
- BZOJ 3195 [Jxoi2012]奇怪的道路 | 状压DP
传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- BZOJ 3446: [Usaco2014 Feb]Cow Decathlon( 状压dp )
水状压dp. dp(x, s) = max{ dp( x - 1, s - {h} ) } + 奖励(假如拿到的) (h∈s). 时间复杂度O(n * 2^n) ------------------- ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- BZOJ 4197 NOI 2015 寿司晚宴 状压DP
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 694 Solved: 440[Submit][Status] ...
- BZOJ 1879 [Sdoi2009]Bill的挑战 ——状压DP
本来打算好好写写SDOI的DP题目,但是忒难了, 太难了,就写的这三道题仿佛是可做的. 生在弱省真是兴奋. 这题目直接状压,f[i][j]表示匹配到i,状态集合为j的方案数,然后递推即可. #incl ...
- bzoj 4197: [Noi2015]寿司晚宴【状压dp】
一个数内可能多个的质因数只有小于根号n的,500内这样的数只有8个,所以考虑状压 把2~n的数处理出小于根号500的质因数集压成s,以及大质数p(没有就是1),然后按p排序 根据题目要求,拥有一个质因 ...
- bzoj 1072: [SCOI2007]排列perm【状压dp】
先写了个next_permutation结果T了,于是开始写状压 设f[s][i]为选取状态为s,选的数模d为i的方案数,去重的话直接除以每个数字的出现次数的阶乘即可 #include<iost ...
随机推荐
- SimMechanics/Second Generation倒立摆模型建立及初步仿真学习
笔者最近捣鼓Simulink,发现MATLAB的仿真模块真的十分强大,以前只是在命令窗口敲点代码,直到不小心敲入simulink,就一发不可收拾.话说simulink的模块化建模确实方便,只要拖拽框框 ...
- git体验
(1)git初始化配置#配置用户名git config --global user.name "azcode"#配置邮箱git config --global user.email ...
- Luogu P2158 仪仗队 题解报告
题目传送门 [题目大意] 给定一个n×n的点方阵,求站在左下角的点能看到的点数 注意同一条直线上只能看到一个点 [思路分析] 因为是一个方阵,所以可以对称地算,那么对于半个方阵,这里假设是左上的半个方 ...
- python2x和python3的区别
1,源码的区别 py2x:源码比较混乱,重复代码较多,冗余 py3x: 源码崇尚优美,代码清晰简单 2,用户交互的区别: py2x:python2中input的到的数据类型为int型,Python2x ...
- # 20175333曹雅坤《Java程序设计》第七周学习总结
教材学习内容总结 第八章-常用实用类String类 构造String对象 字符串的并置 String类的常用方法 字符串与基本数据的互相转化 对象的字符串表示 字符串与字符.字节数组 正则表达式及字符 ...
- node命令行工具—cf-cli
音乐分享: 钢心 - <龙王> 初喜<冠军>后喜<龙王> (PS:听一次钢心乐队的演出后采访才知道 “龙王”隐喻的是一起喝酒的老铁....) ——————————— ...
- ffmpeg错误:Invalid UE golomb code
解决方案在github https://github.com/FFmpeg/FFmpeg/commit/c51c08e0e70c186971385bdbb225f69edd4e3375 问题简要描述为 ...
- mysql 从一个表查询数据插入另一个表或当前表
mysql insert into 表明(uid,lng,lat) SELECT uuid,lng,lat FROM 表明
- Vue:window.onresize
1. 添加属性screenHeight 和 timer. screenHeight: window.innerHeight timer: '' // window.onresize函数频繁调用时,页 ...
- VS Code 1.28版本设置中文界面的方法
最近将vscode升级到1.28版本,发现升级后默认界面变成英文了,而且在按照网上的说法在locale.json设置locale: "zh-cn"也不起效,解决的解决方法很简单: ...