P1265 公路修建 最小生成树
题目描述
某国有n个城市,它们互相之间没有公路相通,因此交通十分不便。为解决这一“行路难”的问题,政府决定修建公路。修建公路的任务由各城市共同完成。
修建工程分若干轮完成。在每一轮中,每个城市选择一个与它最近的城市,申请修建通往该城市的公路。政府负责审批这些申请以决定是否同意修建。
政府审批的规则如下:
(1)如果两个或以上城市申请修建同一条公路,则让它们共同修建;
(2)如果三个或以上的城市申请修建的公路成环。如下图,A申请修建公路AB,B申请修建公路BC,C申请修建公路CA。则政府将否决其中最短的一条公路的修建申请;
(3)其他情况的申请一律同意。
一轮修建结束后,可能会有若干城市可以通过公路直接或间接相连。这些可以互相:连通的城市即组成“城市联盟”。在下一轮修建中,每个“城市联盟”将被看作一个城市,发挥一个城市的作用。
当所有城市被组合成一个“城市联盟”时,修建工程也就完成了。
你的任务是根据城市的分布和前面讲到的规则,计算出将要修建的公路总长度。
输入输出格式
输入格式:
第一行一个整数n,表示城市的数量。(n≤5000)
以下n行,每行两个整数x和y,表示一个城市的坐标。(-1000000≤x,y≤1000000)
输出格式:
一个实数,四舍五入保留两位小数,表示公路总长。(保证有惟一解)
输入输出样例
4
0 0
1 2
-1 2
0 4
6.47 难点在 第二条规则 但是显然 这条规则是永远不起作用的 一开始计算所有的距离存在邻接矩阵里面 MLE
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define pb push_back
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
#define inf 0x3f3f3f3f
//////////////////////////////////////
const int N = +;
int f[N];
int find1(int x)
{
return f[x]==x?x:f[x]=find1(f[x]);
}
struct node
{
int id,id2;
double x,y;
double len;
}s[N],s2[N*N];
int n,m;
int cnt=;
bool cmp(node a,node b)
{
return a.len<b.len;
}
int main()
{
int b;
RI(b);
rep(i,,b)
{
scanf("%lf%lf",&s[i].x,&s[i].y);
s[i].id=i;
f[i]=i;
}
rep(i,,b)
rep(j,,b)
if(j>i)
{
s2[++cnt].id=s[i].id;
s2[cnt].id2=s[j].id;
s2[cnt].len=(double)sqrt( (s[i].x-s[j].x)*(s[i].x-s[j].x)+ (s[i].y-s[j].y)*(s[i].y-s[j].y) );
}
sort(s2+,s2++cnt,cmp);
int x=;
double sum=;
rep(i,,cnt)
{
int a1=s2[i].id;
int b1=s2[i].id2;
a1=find1(a1);b1=find1(b1);
if(a1==b1)continue;
x++;
f[a1]=b1;
sum+=s2[i].len;
if(x==b)
{
printf("%.2lf",sum);break;
}
}
}
用的时候直接计算即可
发现prim算法打起来更加方便
注意求距离前面要加两个double
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define pb push_back
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
#define inf 0x3f3f3f3f
//////////////////////////////////////
const int N = +;
struct node
{
int x,y;
}s[N];
double dit(node a,node b)
{
return sqrt( (double)(a.x-b.x)*(a.x-b.x)+(double)(a.y-b.y)*(a.y-b.y) );
}
int vis[N];
double dis[N];
int main()
{
int n;
RI(n);
rep(i,,n)
RII(s[i].x,s[i].y),vis[i]=,dis[i]=1e8; double ans=;
dis[]=;int u;
rep(i,,n)
{
double minn=1e8;
rep(j,,n)
if(!vis[j]&&dis[j]<minn)
minn=dis[u=j];
ans+=minn;
vis[u]=;
rep(j,,n)
{
double d=dit(s[j],s[u]);
if(d<dis[j])dis[j]=d;
}
}
printf("%.2lf",ans);
}
P1265 公路修建 最小生成树的更多相关文章
- 洛谷P1265 公路修建
P1265 公路修建 177通过 600提交 题目提供者该用户不存在 标签图论 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 long long类型赋值-1为什么… p党80的进 为什么不过 ...
- 洛谷——P1265 公路修建
P1265 公路修建 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一 ...
- 洛谷P1265 公路修建(Prim)
To 洛谷.1265 公路修建 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完 ...
- 洛谷P1265 公路修建题解
题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...
- P1265 公路修建 洛谷
https://www.luogu.org/problem/show?pid=1265 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公 ...
- P1265 公路修建 (prim)
题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一"行路难"的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮 ...
- 洛谷P1265 公路修建——prim
给一手链接 https://www.luogu.com.cn/problem/P1265 这道题本质上就是最小生成树,题目描述就是prim的思想 TIP:注意稠密图和稀疏图的区别 #include&l ...
- 洛谷 [P1265] 公路修建
本题的描述:城市联盟,最短距离.. 使人想到了prim求MST,再一看数据范围:完全图!,那么一定得用prim,因为只有5000个点,所以不加优化的prim就能过. #include <iost ...
- Luogu P1265 公路修建
一眼看去,就是一道MST的模板题. 然后果断准备跑Kruskal,然后5个TLE. Kruskal复杂度对于这个完全图要O(n^2*logn^2),快排就会导致超时. 然后打了刚学的Prim.朴素O( ...
随机推荐
- TP5.x——多数据库连接查询
前言 需要到不同的数据库获取不同的表,看了下文档发现有这类方法,就记录下 文档 https://www.kancloud.cn/manual/thinkphp5_1/353998 步骤 配置文件 re ...
- python学习日记(初识面向对象)
面向过程 VS 面向对象 面向过程 面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行.为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统 ...
- BZOJ2588 主席树 + 树上差分
https://www.lydsy.com/JudgeOnline/problem.php?id=2588 题意:强制在线的询问树链权值第K小(无修) 这种类似于第K小的题,一般容易想到主席树,但是树 ...
- ZooKeeper-客户端命令 zkCli
执行 bin/zkCli 文件进入客户端 查看帮助 help ZooKeeper -server host:port cmd args stat path [watch] set path data ...
- nodemon 热更新
sudo npm i -g nodemon nodemon app.js
- HDU 5963(游戏 博弈+规律)
题意是: 一群男生和一群女生玩游戏:给出一棵 n 个节点的树,这棵树的每条边有一个权值 0 或 1. 在一局游戏开始时,确定一个节点作为根.从女生开始,双方轮流进行操作. 当一方操作时,要先选择一个不 ...
- 如何实现Python调用C代码--python与C之间如何通信(swig)
转载: https://www.zhihu.com/question/23003213 1. C代码如何调用Python 1.1 test #include <Python.h> int ...
- 第十二节: EF的三种模式(二) 之 ModelFirst模式(SQLServer为例)
一. 简介 顾名思义,ModelFirst是模型优先,是DBFirst的逆向模式,先建立实体数据模型,然后根据实体数据模型来生成数据库,从而驱动整个开发流程.(生成一个空的edmx文件,手动在里面建 ...
- 第十四节:Lambda、linq、SQL的相爱相杀(3)
一. SQL 开篇 1. where用法 #region 封装EF调用SQL语句查询 public static List<T> ExecuteQuery<T>(string ...
- 7系列FPGA的时钟资源——UG472
时钟架构总览 7系的FPGA使用了专用的全局(Global)和区域(Regional)IO和时钟资源来管理设计中各种的时钟需求.Clock Management Tiles(CMT)提供了时钟合成(C ...