题目描述

某国有n个城市,它们互相之间没有公路相通,因此交通十分不便。为解决这一“行路难”的问题,政府决定修建公路。修建公路的任务由各城市共同完成。

修建工程分若干轮完成。在每一轮中,每个城市选择一个与它最近的城市,申请修建通往该城市的公路。政府负责审批这些申请以决定是否同意修建。

政府审批的规则如下:

(1)如果两个或以上城市申请修建同一条公路,则让它们共同修建;

(2)如果三个或以上的城市申请修建的公路成环。如下图,A申请修建公路AB,B申请修建公路BC,C申请修建公路CA。则政府将否决其中最短的一条公路的修建申请;

(3)其他情况的申请一律同意。

一轮修建结束后,可能会有若干城市可以通过公路直接或间接相连。这些可以互相:连通的城市即组成“城市联盟”。在下一轮修建中,每个“城市联盟”将被看作一个城市,发挥一个城市的作用。

当所有城市被组合成一个“城市联盟”时,修建工程也就完成了。

你的任务是根据城市的分布和前面讲到的规则,计算出将要修建的公路总长度。

输入输出格式

输入格式:

第一行一个整数n,表示城市的数量。(n≤5000)

以下n行,每行两个整数x和y,表示一个城市的坐标。(-1000000≤x,y≤1000000)

输出格式:

一个实数,四舍五入保留两位小数,表示公路总长。(保证有惟一解)

输入输出样例

输入样例#1: 复制

4
0 0
1 2
-1 2
0 4
输出样例#1: 复制

6.47

难点在 第二条规则 但是显然 这条规则是永远不起作用的

一开始计算所有的距离存在邻接矩阵里面 MLE
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define pb push_back
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
#define inf 0x3f3f3f3f
//////////////////////////////////////
const int N = +;
int f[N];
int find1(int x)
{
return f[x]==x?x:f[x]=find1(f[x]);
}
struct node
{
int id,id2;
double x,y;
double len;
}s[N],s2[N*N];
int n,m;
int cnt=;
bool cmp(node a,node b)
{
return a.len<b.len;
}
int main()
{
int b;
RI(b);
rep(i,,b)
{
scanf("%lf%lf",&s[i].x,&s[i].y);
s[i].id=i;
f[i]=i;
}
rep(i,,b)
rep(j,,b)
if(j>i)
{
s2[++cnt].id=s[i].id;
s2[cnt].id2=s[j].id;
s2[cnt].len=(double)sqrt( (s[i].x-s[j].x)*(s[i].x-s[j].x)+ (s[i].y-s[j].y)*(s[i].y-s[j].y) );
}
sort(s2+,s2++cnt,cmp);
int x=;
double sum=;
rep(i,,cnt)
{
int a1=s2[i].id;
int b1=s2[i].id2;
a1=find1(a1);b1=find1(b1);
if(a1==b1)continue;
x++;
f[a1]=b1;
sum+=s2[i].len;
if(x==b)
{
printf("%.2lf",sum);break;
}
}
}

用的时候直接计算即可

发现prim算法打起来更加方便

注意求距离前面要加两个double

#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);--i)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define ll long long
#define pb push_back
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
#define inf 0x3f3f3f3f
//////////////////////////////////////
const int N = +;
struct node
{
int x,y;
}s[N];
double dit(node a,node b)
{
return sqrt( (double)(a.x-b.x)*(a.x-b.x)+(double)(a.y-b.y)*(a.y-b.y) );
}
int vis[N];
double dis[N];
int main()
{
int n;
RI(n);
rep(i,,n)
RII(s[i].x,s[i].y),vis[i]=,dis[i]=1e8; double ans=;
dis[]=;int u;
rep(i,,n)
{
double minn=1e8;
rep(j,,n)
if(!vis[j]&&dis[j]<minn)
minn=dis[u=j];
ans+=minn;
vis[u]=;
rep(j,,n)
{
double d=dit(s[j],s[u]);
if(d<dis[j])dis[j]=d;
}
}
printf("%.2lf",ans);
}

P1265 公路修建 最小生成树的更多相关文章

  1. 洛谷P1265 公路修建

    P1265 公路修建 177通过 600提交 题目提供者该用户不存在 标签图论 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 long long类型赋值-1为什么… p党80的进 为什么不过 ...

  2. 洛谷——P1265 公路修建

    P1265 公路修建 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一 ...

  3. 洛谷P1265 公路修建(Prim)

    To 洛谷.1265 公路修建 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完 ...

  4. 洛谷P1265 公路修建题解

    题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...

  5. P1265 公路修建 洛谷

    https://www.luogu.org/problem/show?pid=1265 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公 ...

  6. P1265 公路修建 (prim)

    题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一"行路难"的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮 ...

  7. 洛谷P1265 公路修建——prim

    给一手链接 https://www.luogu.com.cn/problem/P1265 这道题本质上就是最小生成树,题目描述就是prim的思想 TIP:注意稠密图和稀疏图的区别 #include&l ...

  8. 洛谷 [P1265] 公路修建

    本题的描述:城市联盟,最短距离.. 使人想到了prim求MST,再一看数据范围:完全图!,那么一定得用prim,因为只有5000个点,所以不加优化的prim就能过. #include <iost ...

  9. Luogu P1265 公路修建

    一眼看去,就是一道MST的模板题. 然后果断准备跑Kruskal,然后5个TLE. Kruskal复杂度对于这个完全图要O(n^2*logn^2),快排就会导致超时. 然后打了刚学的Prim.朴素O( ...

随机推荐

  1. bzoj 2816: [ZJOI2012]网络 (LCT 建多棵树)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2816 题面: http://www.lydsy.com/JudgeOnline/upload ...

  2. 一种特殊的 jpg 图片: MagickProfileImage() sRGB.icc

    原图,在 ps, 浏览器中显示这样: 在 ps 中另存为 web... [转换成 sRGB]选项没有勾选: 在 ps 中另存为 web... 勾选[转换成 sRGB]选项: 用 ImageMaigck ...

  3. 给react-native添加图标和启动屏

    react native 项目默认是没有图标,并且启动页面只有文字.这个样子并不能算是一个完整的APP,现在就给APP加一个图标和一个适应所有屏幕尺寸的启动图,并且设置启动图遮住项目启动时候的白色闪屏 ...

  4. makefile :=和+=

    经常有人分不清= .:=和+=的区别  这里我总结下做下详细的分析: 首先你得清楚makefile的运行环境,因为我是linux系统,那么我得运行环境是shell 在Linux的shell里,shel ...

  5. python格式化输出的几种方式

    第一种  字符串拼接  就不写了 下面的是 第二 第三 第四种 name = input("name:") age = int(input("age:")) p ...

  6. CMDB服务器管理系统【s5day88】:采集资产-文件配置(二)

    上节疑问: 1.老师我们已经写到global_settings里了,为什么还要写到__init__.py setting 这的作用是为了:整合起两个的组合global_settings和setting ...

  7. Maven 学习总结 (二) 之 生命周期与插件

    五.生命周期与插件 1.Maven有三套独立的生命周期:clean.default和site. clean生命周期的目的是清理项目,default生命周期的目的是构建项目,site生命周期的目的是建立 ...

  8. Entity Framework入门教程(10)---离线场景保存和删除实体/实体图集

    离线场景保存和删除实体/实体图集 这一节的内容是在离线场景中保存实体和实体图集 在离线场景中,当我们保存一个离线的实体图集或一个单独的离线实体时,我们需要做两件事.首先,我们要把实体附加到新的上下文中 ...

  9. 【转载】 C++之split字符串分割

    https://blog.csdn.net/mary19920410/article/details/77372828

  10. Vorticity directions 1: self-improving property of the vorticity

    在 [Li, Siran. "On Vortex Alignment and Boundedness of $ L^ q $ Norm of Vorticity." arXiv p ...