sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

https://blog.csdn.net/eddy_zheng/article/details/50763648

1、相关知识
从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。有很多人认为,它们并没有可比性,或是根本没必要放在一起比较。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括convolution layer 或是 LSTM 单元。其实,如果我们顺着神经网络技术发展的脉络,就很容易弄清这几种网络结构发明的初衷,和他们之间本质的区别。

2、神经网络发展
2.1 感知机
神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt。但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,对于计算稍微复杂的函数其计算力显得无能为力。

2.2 多层感知机的出现
随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart、Williams、Hinton、LeCun等人发明的多层感知机(multilayer perceptron)克服。多层感知机,顾名思义,就是有多个隐含层的感知机。我们看一下多层感知机的结构:

图1 :多层感知机(神经网络)

多层感知机可以摆脱早期离散传输函数的束缚,使用sigmoid或tanh等连续函数模拟神经元对激励的响应,在训练算法上则使用Werbos发明的反向传播BP算法。对,这就是我们现在所说的神经网络( NN)!多层感知机解决了之前无法模拟异或逻辑的缺陷,同时更多的层数也让网络更能够刻画现实世界中的复杂情形。多层感知机给我们带来的启示是,神经网络的层数直接决定了它对现实的刻画能力——利用每层更少的神经元拟合更加复杂的函数。

即便大牛们早就预料到神经网络需要变得更深,但是有一个梦魇总是萦绕左右。随着神经网络层数的加深,优化函数越来越容易陷入局部最优解,并且这个“陷阱”越来越偏离真正的全局最优。利用有限数据训练的深层网络,性能还不如较浅层网络。同时,另一个不可忽略的问题是随着网络层数增加,“梯度消失”现象更加严重。具体来说,我们常常使用 sigmoid 作为神经元的输入输出函数。对于幅度为1的信号,在BP反向传播梯度时,每传递一层,梯度衰减为原来的0.25。层数一多,梯度指数衰减后低层基本上接受不到有效的训练信号。

2.3 (DNN)神经网络“具有深度”
2006年,Hinton利用预训练方法缓解了局部最优解问题,将隐含层推动到了7层(参考论文:Hinton G E, Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313(5786):504-507.),神经网络真正意义上有了“深度”,由此揭开了深度学习的热潮。这里的“深度”并没有固定的定义——在语音识别中4层网络就能够被认为是“较深的”,而在图像识别中20层以上的网络屡见不鲜。为了克服梯度消失,ReLU、maxout等传输函数代替了 sigmoid,形成了如今 DNN 的基本形式。单从结构上来说,全连接的DNN和上图的多层感知机是没有任何区别的。值得一提的是,今年出现的高速公路网络(highway network)和深度残差学习(deep residual learning)进一步避免了梯度弥散问题,网络层数达到了前所未有的一百多层(深度残差学习:152层,具体去看何恺明大神的paper)!

2.4 CNN(卷积神经网络)的出现
如图1所示,我们看到全连接DNN的结构里下层神经元和所有上层神经元都能够形成连接,带来的潜在问题是参数数量的膨胀。假设输入的是一幅像素为1K*1K的图像,隐含层有1M个节点,光这一层就有10^12个权重需要训练,这不仅容易过拟合,而且极容易陷入局部最优。另外,图像中有固有的局部模式(比如轮廓、边界,人的眼睛、鼻子、嘴等)可以利用,显然应该将图像处理中的概念和神经网络技术相结合。此时我们可以祭出题主所说的卷积神经网络CNN。对于CNN来说,并不是所有上下层神经元都能直接相连,而是通过“卷积核”作为中介。同一个卷积核在所有图像内是共享的,图像通过卷积操作后仍然保留原先的位置关系。卷积层之间的卷积传输的示意图如下:

图2:LeNet-5

通过一个例子简单说明卷积神经网络的结构。假设我们需要识别一幅彩色图像,这幅图像具有四个通道 ARGBARGB (透明度和红绿蓝,对应了四幅相同大小的图像),假设卷积核大小为 3∗33∗3 共使用100个卷积核w1w1到w100w100(从直觉来看,每个卷积核应该学习到不同的结构特征)。用w1w1在ARGB图像上进行卷积操作,可以得到隐含层的第一幅图像;这幅隐含层图像左上角第一个像素是四幅输入图像左上角 3∗33∗3 区域内像素的加权求和,以此类推。同理,算上其他卷积核,隐含层对应100幅“图像”。每幅图像对是对原始图像中不同特征的响应。按照这样的结构继续传递下去。CNNCNN中还有 max-pooling 等操作进一步提高鲁棒性。

我们注意到,对于图像,如果没有卷积操作,学习的参数量是灾难级的。CNN之所以用于图像识别,正是由于CNN模型限制了参数的个数并挖掘了局部结构的这个特点。顺着同样的思路,利用语音语谱结构中的局部信息,CNN照样能应用在语音识别中。在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward Neural Networks)。

2.5 RNN(循环神经网络)的出现
全连接的DNN还存在着另一个问题——无法对时间序列上的变化进行建模。然而,样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要。对了适应这种需求,就出现了另一种神经网络结构——循环神经网络RNN。而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i−1)(i−1)层神经元在该时刻的输出外,还包括其自身在(m−1)(m−1)时刻的输出。

RNN可以看成一个在时间上传递的神经网络,它的深度是时间的长度!正如我们上面所说,“梯度消失”现象又要出现了,只不过这次发生在时间轴上。对于tt时刻来说,它产生的梯度在时间轴上向历史传播几层之后就消失了,根本就无法影响太遥远的过去。因此,之前说“所有历史”共同作用只是理想的情况,在实际中,这种影响也就只能维持若干个时间戳。为了解决时间上的梯度消失,机器学习领域发展出了长短时记忆单元 LSTM,通过门的开关实现时间上记忆功能,并防止梯度消失

3 结束语
事实上,不论是那种网络,他们在实际应用中常常都混合着使用,比如CNN和RNN在上层输出之前往往会接上全连接层,很难说某个网络到底属于哪个类别。不难想象随着深度学习热度的延续,更灵活的组合方式、更多的网络结构将被发展出来。尽管看起来千变万化,但研究者们的出发点肯定都是为了解决特定的问题。对于想进行这方面的研究的朋友,不妨仔细分析一下这些结构各自的特点以及它们达成目标的手段。入门的话可以参考:
ufldl 教程:http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B

python风控评分卡建模和风控常识(博客主亲自录制视频教程)

神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解的更多相关文章

  1. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  2. 神经网络 之 DNN(深度神经网络) 介绍

    CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络) CNN 专门解决图像问题的,可用把它看作特征提取层,放在输入层上,最后用MLP 做分类. RNN 专门解决时间序列问题的,用来提 ...

  3. CNN(卷积神经网络)、RNN(循环神经网络)和DNN(深度神经网络)

    本文转载修改自:知乎-科言君 感知机(perceptron) 神经网络技术起源于上世纪五.六十年代,当时叫感知机(perceptron),拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换达 ...

  4. 深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用

    深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能 ...

  5. 深度学习实践系列(2)- 搭建notMNIST的深度神经网络

    如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) ...

  6. CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM

    http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...

  7. Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例

    CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...

  8. Recurrent Neural Networks(RNN) 循环神经网络初探

    1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一 ...

  9. 循环神经网络(Recurrent Neural Networks, RNN)介绍

    目录 1 什么是RNNs 2 RNNs能干什么 2.1 语言模型与文本生成Language Modeling and Generating Text 2.2 机器翻译Machine Translati ...

随机推荐

  1. c/c++ 网络编程 UDP up/down 网卡

    网络编程 UDP up/down 网卡 在程序里动态改变网卡的状态.注意:程序运行需要root权限. 程序运行的方法: sudo ./a.out 1,关闭网卡 #include <stdio.h ...

  2. 做为一个Python程序员的基本素养

    今天在学习的过程中,明白了一些不是Python标准所必须要做的事情,二是做为一个合格的Python程序员应该所遵从的一些规范 分享给大家,有不足的地方请大家指正,此下是我学习的一点心得: 1.在给变量 ...

  3. git、github、gitlab之间的关系

    GIt-版本控制工具:GitHub-一个网站平台,提供给用户空间存储git仓储,保存用户的一些数据文档或者代码等:GitLab - 基于Git的项目管理软件. Git分布式版本控制系统 Git是一款自 ...

  4. org.springframework.web.context.support.XmlWebApplicationContext.refresh Exception encountered during context initialization - cancelling refresh attempt: org.springframework.beans.factory.BeanCreatio

    错误异常: 11-Apr-2019 18:07:14.006 警告 [RMI TCP Connection(5)-127.0.0.1] org.springframework.web.context. ...

  5. C# 对文本文件的几种读写方法总结

    计算机在最初只支持ASCII编码,但是后来为了支持其他语言中的字符(比如汉字)以及一些特殊字符(比如€),就引入了Unicode字符集.基于Unicode字符集的编码方式有很多,比如UTF-7.UTF ...

  6. Java面试准备之探究源码

    摘要:之前虽然对集合框架一些知识点作了总结,但是想想面试可能会问源码,于是又大致研究了一下集合框架的一些实现类的源码,在此整理一下. 一.集合框架 二.深究实现类 1.ArrayList源码实现 Ar ...

  7. 【转】SpringBoot启动服务的三种方式

    1.IDEA启动 2.命令行启动 首先将命令行位置跳转到当前项目的根目录下,再输入“mvn spring-boot:run”命令,初次操作maven需要下载插件等待几分钟 3.命令行编译为jar启动 ...

  8. Python Revisited Day 05(模块)

    目录 5.1 模块与包 5.1.1 包 5.2 Python 标准库概览 5.2.1 字符串处理 io.StringIO 类 5.2.3 命令行设计 5.2.4 数学与数字 5.2.5 时间与日期 5 ...

  9. 软件工程(FZU2015) 赛季得分榜,第11回合(beta冲刺+SE总结)

    SE_FZU目录:1 2 3 4 5 6 7 8 9 10 11 12 13 积分规则 积分制: 作业为10分制,练习为3分制:alpha30分:beta30分 团队项目分=团队得分+个人贡献分 个人 ...

  10. Photoshop调出外景婚片蓝色小清新艺术效果

    春季婚纱旺季来了,好多童鞋给我抱怨说客片太难转色了,春天的小清新感都转不了,其实并不难,运用好互补色来进行加减色,能很快调整好照片的偏色,互补色也可称为对比色,后期调色的加也可称为减,如加蓝=减黄.加 ...