神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
https://blog.csdn.net/eddy_zheng/article/details/50763648
1、相关知识
从广义上来说,NN(或是更美的DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。有很多人认为,它们并没有可比性,或是根本没必要放在一起比较。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括convolution layer 或是 LSTM 单元。其实,如果我们顺着神经网络技术发展的脉络,就很容易弄清这几种网络结构发明的初衷,和他们之间本质的区别。
2、神经网络发展
2.1 感知机
神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt。但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,对于计算稍微复杂的函数其计算力显得无能为力。
2.2 多层感知机的出现
随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart、Williams、Hinton、LeCun等人发明的多层感知机(multilayer perceptron)克服。多层感知机,顾名思义,就是有多个隐含层的感知机。我们看一下多层感知机的结构:
图1 :多层感知机(神经网络)
多层感知机可以摆脱早期离散传输函数的束缚,使用sigmoid或tanh等连续函数模拟神经元对激励的响应,在训练算法上则使用Werbos发明的反向传播BP算法。对,这就是我们现在所说的神经网络( NN)!多层感知机解决了之前无法模拟异或逻辑的缺陷,同时更多的层数也让网络更能够刻画现实世界中的复杂情形。多层感知机给我们带来的启示是,神经网络的层数直接决定了它对现实的刻画能力——利用每层更少的神经元拟合更加复杂的函数。
即便大牛们早就预料到神经网络需要变得更深,但是有一个梦魇总是萦绕左右。随着神经网络层数的加深,优化函数越来越容易陷入局部最优解,并且这个“陷阱”越来越偏离真正的全局最优。利用有限数据训练的深层网络,性能还不如较浅层网络。同时,另一个不可忽略的问题是随着网络层数增加,“梯度消失”现象更加严重。具体来说,我们常常使用 sigmoid 作为神经元的输入输出函数。对于幅度为1的信号,在BP反向传播梯度时,每传递一层,梯度衰减为原来的0.25。层数一多,梯度指数衰减后低层基本上接受不到有效的训练信号。
2.3 (DNN)神经网络“具有深度”
2006年,Hinton利用预训练方法缓解了局部最优解问题,将隐含层推动到了7层(参考论文:Hinton G E, Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313(5786):504-507.),神经网络真正意义上有了“深度”,由此揭开了深度学习的热潮。这里的“深度”并没有固定的定义——在语音识别中4层网络就能够被认为是“较深的”,而在图像识别中20层以上的网络屡见不鲜。为了克服梯度消失,ReLU、maxout等传输函数代替了 sigmoid,形成了如今 DNN 的基本形式。单从结构上来说,全连接的DNN和上图的多层感知机是没有任何区别的。值得一提的是,今年出现的高速公路网络(highway network)和深度残差学习(deep residual learning)进一步避免了梯度弥散问题,网络层数达到了前所未有的一百多层(深度残差学习:152层,具体去看何恺明大神的paper)!
2.4 CNN(卷积神经网络)的出现
如图1所示,我们看到全连接DNN的结构里下层神经元和所有上层神经元都能够形成连接,带来的潜在问题是参数数量的膨胀。假设输入的是一幅像素为1K*1K的图像,隐含层有1M个节点,光这一层就有10^12个权重需要训练,这不仅容易过拟合,而且极容易陷入局部最优。另外,图像中有固有的局部模式(比如轮廓、边界,人的眼睛、鼻子、嘴等)可以利用,显然应该将图像处理中的概念和神经网络技术相结合。此时我们可以祭出题主所说的卷积神经网络CNN。对于CNN来说,并不是所有上下层神经元都能直接相连,而是通过“卷积核”作为中介。同一个卷积核在所有图像内是共享的,图像通过卷积操作后仍然保留原先的位置关系。卷积层之间的卷积传输的示意图如下:
图2:LeNet-5
通过一个例子简单说明卷积神经网络的结构。假设我们需要识别一幅彩色图像,这幅图像具有四个通道 ARGBARGB (透明度和红绿蓝,对应了四幅相同大小的图像),假设卷积核大小为 3∗33∗3 共使用100个卷积核w1w1到w100w100(从直觉来看,每个卷积核应该学习到不同的结构特征)。用w1w1在ARGB图像上进行卷积操作,可以得到隐含层的第一幅图像;这幅隐含层图像左上角第一个像素是四幅输入图像左上角 3∗33∗3 区域内像素的加权求和,以此类推。同理,算上其他卷积核,隐含层对应100幅“图像”。每幅图像对是对原始图像中不同特征的响应。按照这样的结构继续传递下去。CNNCNN中还有 max-pooling 等操作进一步提高鲁棒性。
我们注意到,对于图像,如果没有卷积操作,学习的参数量是灾难级的。CNN之所以用于图像识别,正是由于CNN模型限制了参数的个数并挖掘了局部结构的这个特点。顺着同样的思路,利用语音语谱结构中的局部信息,CNN照样能应用在语音识别中。在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward Neural Networks)。
2.5 RNN(循环神经网络)的出现
全连接的DNN还存在着另一个问题——无法对时间序列上的变化进行建模。然而,样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要。对了适应这种需求,就出现了另一种神经网络结构——循环神经网络RNN。而在RNN中,神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i−1)(i−1)层神经元在该时刻的输出外,还包括其自身在(m−1)(m−1)时刻的输出。
RNN可以看成一个在时间上传递的神经网络,它的深度是时间的长度!正如我们上面所说,“梯度消失”现象又要出现了,只不过这次发生在时间轴上。对于tt时刻来说,它产生的梯度在时间轴上向历史传播几层之后就消失了,根本就无法影响太遥远的过去。因此,之前说“所有历史”共同作用只是理想的情况,在实际中,这种影响也就只能维持若干个时间戳。为了解决时间上的梯度消失,机器学习领域发展出了长短时记忆单元 LSTM,通过门的开关实现时间上记忆功能,并防止梯度消失
3 结束语
事实上,不论是那种网络,他们在实际应用中常常都混合着使用,比如CNN和RNN在上层输出之前往往会接上全连接层,很难说某个网络到底属于哪个类别。不难想象随着深度学习热度的延续,更灵活的组合方式、更多的网络结构将被发展出来。尽管看起来千变万化,但研究者们的出发点肯定都是为了解决特定的问题。对于想进行这方面的研究的朋友,不妨仔细分析一下这些结构各自的特点以及它们达成目标的手段。入门的话可以参考:
ufldl 教程:http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B
python风控评分卡建模和风控常识(博客主亲自录制视频教程)
神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解的更多相关文章
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...
- 神经网络 之 DNN(深度神经网络) 介绍
CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络) CNN 专门解决图像问题的,可用把它看作特征提取层,放在输入层上,最后用MLP 做分类. RNN 专门解决时间序列问题的,用来提 ...
- CNN(卷积神经网络)、RNN(循环神经网络)和DNN(深度神经网络)
本文转载修改自:知乎-科言君 感知机(perceptron) 神经网络技术起源于上世纪五.六十年代,当时叫感知机(perceptron),拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换达 ...
- 深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用
深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能 ...
- 深度学习实践系列(2)- 搭建notMNIST的深度神经网络
如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) ...
- CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM
http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...
- Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例
CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...
- Recurrent Neural Networks(RNN) 循环神经网络初探
1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一 ...
- 循环神经网络(Recurrent Neural Networks, RNN)介绍
目录 1 什么是RNNs 2 RNNs能干什么 2.1 语言模型与文本生成Language Modeling and Generating Text 2.2 机器翻译Machine Translati ...
随机推荐
- nginx主配置文件详解
#定义Nginx运行的用户和用户组user www www; #nginx进程数,建议设置为等于CPU总核心数.worker_processes 8; #全局错误日志定义类型,[ debug | in ...
- 一、Windows Server 2016 AD服务器搭建
简介: AD是Active Directory的简写,中文称活动目录.活动目录(Active Directory)主要提供以下功能: 1)服务器及客户端计算机管理 2)用户服务 3)资源管理 4)桌面 ...
- RabbitMQ广播:topic模式
topic模式跟direct差不多,只是把type改一下就行. direct是把固定的routing_key跟queue绑定,topic是把模糊的routing_key跟queue绑定 原理图: 发布 ...
- Javascript DOM(2)
一.value属性操作 1.具有value属性的三个标签:input.select.textarea 2.value的获取:ele.value input=document.getElementByI ...
- me
PXKUNUIN6A- eyJsaWNlbnNlSWQiOiJQWEtVTlVJTjZBIiwibGljZW5zZWVOYW1lIjoi5b285bK4IDEiLCJhc3NpZ25l ZU5hbWU ...
- Ubuntu16.04中php如何切换版本
其实就是一条Linux命令,如下: sudo update-alternatives --config php 会出现下面选项: There are choices for the alternati ...
- loc iloc函数的区别
import pandas as pd data1 = pd.read_excel(r"G:\Python\example1.xlsx") loc 用行列标签,iloc用数字索引. ...
- OllyDbg使用笔记
[TOC] OD步过后,返回到之前某位置,重新单步执行 找到你想返回的行, 右键选择New origin here,快捷键Ctrl+Gray *, 然后程序会返回到这一行,再次按F7或者F8等执行即可
- LOJ2514 CEOI2011 Hotel 贪心
传送门 考虑一个贪心:对于所有人群按照收益从大到小排序,对于每一个人群找到当前能够选择的代价最小的房间成为一组可行订单(如果没有就不可行),最后将这些订单按照收益排序,选其中正的前\(o\)大即可.找 ...
- vc图像合成
本程序下载地址: 上一篇讲述了tiff格式图片拆分成多张图片, 这篇博客讲述如何把多张任意格式的图片合成为一张图片. 图像合成仍然需要借助Cximage图像库,合成函数为Mixfrom, 函数原型为: ...