由于某毒瘤出题人 redbag 不得不学习一下这个史诗毒瘤算法。

本文参考了 OwaskiGameTheory 的课件。

定义

我们对于一些二维 \(\mathrm{Nim}\) 游戏(好像更高维也行),可以拆分成两维单独的 \(\mathrm{Nim}\) 然后求 \(\mathrm{Nim}\) 积。

定义为

\[x \otimes y = \mathrm{mex}\{(a \otimes b) \oplus (a \otimes y) \oplus (x \otimes b), 0 \le a < x, 0 \le b < y\}
\]

其中 \(\otimes\) 定义为 \(\mathrm{Nim}\) 积,\(\oplus\) 定义为异或。


以下是对于 \(x, y \le 4\) 的一个小表。

0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 3 1 8
3 0 3 1 2 12
4 0 4 8 12 6

性质

运算的性质

观察此表,可以显然的得出:

\[\begin{aligned}
x \otimes 0 &= 0 \otimes x = 0\\
x \otimes 1 &= 1 \otimes x = x\\
x \otimes y &= y \otimes x
\end{aligned}
\]

即 \(0\) 与所有数做 \(\mathrm{Nim}\) 积仍然为 \(0\) , \(1\) 仍然是单位元,并且满足交换律。

不会证明的两个结论:

\[\begin{aligned}
x \otimes (y \otimes z) &= (x \otimes y) \otimes z\\
x \otimes (y \oplus z) &= (o \otimes y) \oplus (x \otimes z)
\end{aligned}
\]

就是说满足乘法交换律,和乘法分配率(把 \(\otimes\) 看作 \(\times\) 以及 \(\oplus\) 看做 \(+\) )。

费马数的一些运算性质

经过数学家的艰苦卓绝的努力,我们有两个十分强大的运算法则。

定义 \(\text{Fermat 2-power}\) 为 \(2^{2^n}\) ,其中 \(n \in \mathbb N\) ,设其为 \(a\) 。

  1. 一个 \(\text{Fermat 2-power}\) 与任意小于它的数的 \(\mathrm{Nim}\) 积为一般意义下乘法的积,即 \(a \otimes x = a \times x~(x < a)\) 。

  2. 一个 \(\text{Fermat 2-power}\) 与自己的 \(\mathrm{Nim}\) 积为自己的 \(\displaystyle \frac 32\) 倍,即 \(\displaystyle a \otimes a = \frac 3 2 a = a \oplus \frac a 2\) 。

算法解决

注意暴力求 \(\mathrm{Nim}\) 积是 \(\mathcal O((xy)^2)\) 的,我们可以利用一些性质在 \(\mathcal O(\log x \log y)\) 的时间内解决。

对于任意 \(x, y\) 的解法

我们设 \(f(x, y) = x \otimes y\) ,我们特判 \(x \text{ or } y = 0, 1\) 的情况后,可以考虑拆出 \(x, y\) 的每个二进制位单独算。

就是设 \(g(x, y) = 2^x \otimes 2^y\) ,那么 \(f(x, y) = \oplus_{x' \in x, y' \in y} g(x', y')\) 。

对于 \(2^x \otimes 2^y\) 的解法

这一段是 zhou888 教我的,太恐怖啦 %%%

那么我们问题就转化为求 \(g(x, y)\) 了。

我们考虑把 \(x, y\) 的二进制位拆出来,变成一个个费马数,然后利用性质处理。

\[2^x \otimes 2^y = (\otimes_{x' \in x} 2^{2^{x'}}) \otimes (\otimes_{y' \in y} 2^{2^{y'}})
\]

考虑 从高到低 依次考虑 \(x, y\) 的每一位,如果这位都为 \(0\) 我们显然可以忽略。

\(x \text{ and } y\) 的情况

假设全都为 \(1\) 那么对于这一位 \(2^u\) 我们设 \(M = 2^{2^u}, A = 2^{x - 2^u}, B = 2^{y - 2^u}\) ,那么有 \(A, B < M\) 。

那么我们的答案其实就是 \(ans = (M \otimes A) \otimes (M \otimes B)\) (注意费马数的 \(\times\) 和 \(\otimes\) 是一样的)即 $ (M \otimes M) \otimes (A \otimes B)$ ,化简一下答案其实就是 \(\displaystyle \frac{3}{2} M \otimes (A \otimes B)\) 。

那么此时我们把 \(2^x, 2^y\) 都去掉最高的一位 \(u\) 变成 \(A, B\) ,继续向低位递归。

\(x \text{ xor } y\) 的情况

假设一个为 \(1\) 一个为 \(0\) ,同样我们设这位为 \(2^u\) ,假设 \(x\) 此位为 \(1\) ,那么有 \(M = 2^{2^u}, A = 2^{x - 2^u}, B = 2^y\) 。

那么答案的形式为 \(ans = (M \otimes A) \otimes B\) 也就是 \(M \otimes (A \otimes B)\) 。类似的,我们去掉最高位,然后不断向下推。


讨论完上面两种情况,我们可以写一下表达式。

我们显然可以利用交换律把 \(x \text { xor } y\) 和 \(x \text { and } y\) 的情况分开。

\[\begin{aligned}
2^x \otimes 2^y
&= (\otimes_{i \in \{x \text{ xor } y\}} 2^{2^i}) \oplus (\otimes_{i \in \{x \text{ and } y\}} \frac{3}{2} 2^{2^i})\\
&= (\prod_{i \in \{x \text{ xor } y\}} 2^{2^i}) \otimes (\otimes_{i \in \{x \text{ and } y\}} \frac{3}{2} 2^{2^i})
\end{aligned}
\]

那么对于前者可以直接算,后面利用 \(f\) 递归算就行了。

复杂度不难发现只会遍历两个所有二进制位,也就是单次为 \(\mathcal O(\log^2 x)\) 。

代码实现

网上的那种推导以及实现方式似乎都有些问题,似乎是其中一个费马数的地方没有保证 \(<\) ,小的不会错,大的会有些问题。

所以我参考了 zhou888 的代码实现。

#define Resolve(i, x) for (int u = (x), i = 0; (1ll << i) <= u; ++ i) if (u >> i & 1)

ll f(ll x, ll y);

ll g(int x, int y) {
if (!x || !y) return 1ll << (x | y);
if (~ tab[x][y]) return tab[x][y];
ll res = 1;
Resolve(i, x ^ y) res <<= (1 << i);
Resolve(i, x & y) res = f(res, 3ll << ((1 << i) - 1));
return tab[x][y] = res;
} ll f(ll x, ll y) {
if (!x || !y) return x | y;
if (x == 1 || y == 1) return max(x, y);
ll res = 0;
Resolve(i, x) Resolve(j, y) res ^= g(i, j);
return res;
}

例题

HDU3404 Switch lights

题意

在一个二维平面中,有 \(n\) 个灯亮着并告诉你坐标,每回合需要找到一个矩形,这个矩形 \((x,y)\) 坐标最大的那个角落的点必须是亮着的灯,然后我们把四个角落的灯状态反转,不能操作为败。

\(T \le 100, n \le 1000, x, y \le 10000\)

题解

\(\mathrm{Turning~Corners}\) 是裸的二维 \(\mathrm{Nim}\) 问题,直接上模板就好了。

复杂度是 \(\mathcal O(Tn\log x \log y)\) 的。

Nim积解法小结的更多相关文章

  1. HDU 3404&POJ 3533 Nim积(二维&三维)

    (Nim积相关资料来自论文曹钦翔<从"k倍动态减法游戏"出发探究一类组合游戏问题>) 关于Nim积计算的两个函数流程: 代码实现如下: ][]={,,,}; int N ...

  2. POJ 3533 Light Switching Game(三维Nim积)题解

    思路:三维Nim积 代码: #include<set> #include<map> #include<stack> #include<cmath> #i ...

  3. HDU 3404 Switch lights(Nim积)题解

    题意:在一个二维平面中,有n个灯亮着并告诉你坐标,每回合需要找到一个矩形,这个矩形xy坐标最大的那个角落的点必须是亮着的灯,然后我们把四个角落的灯状态反转,不能操作为败 思路:二维Nim积,看不懂啊, ...

  4. POJ 3553 Light Switching Game 博弈论 nim积 sg函数

    http://poj.org/problem?id=3533 变成三维的nim积..前面hdu那个算二维nim积的题的函数都不用改,多nim积一次就过了...longlong似乎不必要但是还是加上了 ...

  5. HDU 3404 Switch lights 博弈论 nim积

    http://acm.hdu.edu.cn/showproblem.php?pid=3404 题目 http://www.doc88.com/p-5098170314707.html 论文 nim积在 ...

  6. Nim积的一种???的写法

    Nim积总不能一直打四次暴力吧! 用SG定理等东西,可以证明 \((N, \oplus, \otimes)\) 构成一个域.(证明很难,我不会) 其中 \(\oplus\) 为异或, \(x \oti ...

  7. 2-SAT 问题与解法小结

    2-SAT 问题与解法小结 这个算法十分的奇妙qwq... 将一类判定问题转换为图论问题,然后就很容易解决了. 本文有一些地方摘录了一下赵爽<2-SAT解法浅析> (侵删) 一些概念: \ ...

  8. Nim积

    假如把Nim游戏的取胜规则改为谁取走最后一个石子谁输的话 先手必胜当且仅当: 1.所有堆的石子数都为1且游戏的SG值为0 2.有些堆的石子数大于1且游戏的SG值不为0

  9. nim游戏解法(转)

    转自:http://acm.hdu.edu.cn/forum/read.php?fid=9&tid=10617 取火柴的游戏 题目1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若 ...

随机推荐

  1. android view 转Bitmap 生成截图

    文章链接:https://mp.weixin.qq.com/s/FQmYfT-KYiDbp-0HzK_Hpw 项目中经常会用到分享的功能,有分享链接也有分享图片,其中分享图片有的需要移动端对屏幕内容进 ...

  2. DVWA 黑客攻防演练(九) SQL 盲注 SQL Injection (Blind)

    上一篇文章谈及了 dvwa 中的SQL注入攻击,而这篇和上一篇内容很像,都是关于SQL注入攻击.和上一篇相比,上一篇的注入成功就马上得到所有用户的信息,这部分页面上不会返回一些很明显的信息供你调试,就 ...

  3. win快捷键

    ******************键盘快捷键大全******************  一.常见用法: F1 显示当前程序或者windows的帮助内容. F2 当你选中一个文件的话,这意味着“重命名 ...

  4. 利用ZYNQ SOC快速打开算法验证通路(3)——PS端DMA缓存数据到PS端DDR

    上篇该系列博文中讲述W5500接收到上位机传输的数据,此后需要将数据缓存起来.当数据量较大或者其他数据带宽较高的情况下,片上缓存(OCM)已无法满足需求,这时需要将大量数据保存在外挂的DDR SDRA ...

  5. 英语背单词app

    乐词 √ 真人发音 词根词缀 小组计划及时复习 真人例句 墨墨 单词量测试做的特别好 扇贝 哈哈哈,没用过 百词斩 同样25个单词,我在乐词中背了20分钟,在百词斩中需要60分钟. 原因在于 要记单词 ...

  6. LeetCode算法题-Max Consecutive Ones(Java实现)

    这是悦乐书的第242次更新,第255篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第109题(顺位题号是485).给定二进制数组,找到此数组中连续1的最大数量.例如: 输 ...

  7. C#基础知识之属性

    其实属性大家经常用,可以说是非常熟悉了,这里就记录一下我那天突然对属性产生的疑惑.为什么需要使用属性?属性的好处是什么? 一.什么是属性? 属性(Property) 是类(class).结构(stru ...

  8. An Overview of End-to-End Exactly-Once Processing in Apache Flink (with Apache Kafka, too!)

    01 Mar 2018 Piotr Nowojski (@PiotrNowojski) & Mike Winters (@wints) This post is an adaptation o ...

  9. Vue-Router模式、钩子

    转:https://www.cnblogs.com/heioray/p/7193841.html 模式 vue-router中的模式选项主要在router实例化的时候进行定义的,如下 const ro ...

  10. ideal中把项目打成war包,并放在tomcat运行,遇见的问题。。。

    先说下我遇见的问题吧:最近做项目要把项目放在tomcat上运行,用的springboot框架, 在建项目时选择的是  jar包,项目写完要部署打包是,在pom中虽然把包改成了war ,可是每次放入to ...