问题形式

  
  有\(n\)个位置\(1...n\),每个位置上有\(a_i\)个石子。有两个人轮流操作。操作步骤是:挑选\(1...n\)中任一一个存在石子的位置\(i\),将至少1个石子移动至\(i-1\)位置(也就是最后所有石子都堆在在0这个位置)。谁不能操作谁输。求先手必胜还是必败。
    

结论

  
  问题等价于,求位置为奇数的\(a_i\)的异或和,若异或和等于0,则先手必败,否则先手必胜。你可能已经注意到这非常像Nim游戏。其实这个游戏恰好等价于:将每个奇数位置的数\(x\)看成一堆有\(x\)个石子的石子堆,然后玩Nim游戏。
  

证明

  
  拿走某一堆石子的一部分,相当于将某个奇位置的石子移动到它左边的偶位置上。
  
  如果大家都只动奇位置的石子,那么这等价于两人在玩Nim游戏。
  
  但如果有人想打破规则呢?
  
  假设Nim游戏先手必胜,那么先手肯定优先玩Nim游戏;如果后手试图破坏局面,将某个偶位置上的若干石子移动到了左边的奇位置i上,那么先手可以将这若干个刚移到i的石子继续移动到i左边的偶位置上,对Nim局面依然没有任何影响,除非后手回头来继续动奇位置的石子,那也只能是输。
  
  那么如果Nim游戏先手必败,也是同理,后手可以用相同的方式迫使先手玩Nim游戏,直到输为止。
  
  因此,奇数位置的石子的相关信息,就直接决定了阶梯\(Nim\)问题的结果。

阶梯Nim问题的更多相关文章

  1. POJ 1704 Georgia and Bob [阶梯Nim]

    题意: 每次可以向左移动一个棋子任意步,不能跨过棋子 很巧妙的转化,把棋子间的空隙看成石子堆 然后裸阶梯Nim #include <iostream> #include <cstdi ...

  2. BZOJ 1115: [POI2009]石子游戏Kam [阶梯NIM]

    传送门 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜 ...

  3. luoguP3480 [POI2009]KAM-Pebbles 阶梯Nim

    将序列差分并翻转之后,变成了阶梯\(Nim\)的模板题 QAQ #include <cstdio> #include <cstring> #include <iostre ...

  4. Georgia and Bob POJ - 1704 阶梯Nim

    $ \color{#0066ff}{ 题目描述 }$ Georgia and Bob decide to play a self-invented game. They draw a row of g ...

  5. P3480 [POI2009]KAM-Pebbles 阶梯NIM

    $ \color{#0066ff}{ 题目描述 }$ 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时 ...

  6. bzoj1115&&POJ1704&&HDU4315——阶梯Nim

    BZOJ1115 题意:阶梯Nim游戏大意:每个阶梯上有一堆石子,两个人在阶梯上玩推石子游戏.每人可以将某堆的任意多石子向左推一阶,所有的石子都推到阶梯下了即算成功,即不能推的输. 分析:根据阶梯Ni ...

  7. 阶梯nim游戏

    阶梯nim游戏有n个阶梯,0-n-1,每个阶梯上有一堆石子,编号为i的阶梯上的石子只能移动到i-1上去,每次至少移动一个,最后所有的石子都移动到0号阶梯上了.结论:奇数阶梯上的石子异或起来,要是0,就 ...

  8. [SDOI2019]移动金币(博弈论+阶梯Nim+按位DP)

    首先可以把问题转化一下:m堆石子,一共石子数不超过(n-m)颗,每次可以将一堆中一些石子推向前一堆,无法操作则失败,问有多少种方法使得先手必胜? 然后这个显然是个阶梯Nim,然后有这样的结论:奇数层异 ...

  9. POJ 1704 Georgia and Bob(阶梯Nim博弈)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11357   Accepted: 3749 Description Geor ...

随机推荐

  1. PHP实现开心消消乐的算法示例

    本文主要介绍了关于PHP如何实现我们大家都知道的开心消消乐的算法,分享PHP教程出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 一.需求描述:      1.在一个8*8的矩阵方格中随机 ...

  2. Android PAI (PlayAutoInstall)预装APK 功能

    最近刚找到工作,是手机方案公司,刚接触手机系统预装的APP,以及解决方案MTK平台下预装APP的bug,也接触到了Launcher的东西. 然后接触到了第一个需求 PAI预装APK功能 下面是我用到的 ...

  3. mssql sqlserver 使用sql脚本 清空所有数据库表数据的方法分享

    摘要: 下文讲述清空数据库中所有表信息的方法分享,如下所示: 实验环境:sql server 2008 实现思路: 1.禁用所有约束,外键 2.禁用所有触发器 3.删除表数据 4.开启触发器 5.开启 ...

  4. 数据库之redis篇(2)—— redis配置文件,常用命令,性能测试工具

    redis配置 如果你是找网上的其他教程来完成以上操作的话,相信你见过有的启动命令是这样的: 启动命令带了这个参数:redis.windows.conf,由于我测试环境是windows平台,所以是这个 ...

  5. mmz-asio4delphi死链接的解决办法

    最近一段时间,因为忙于网络的项目,特意到网上找了些例子,特意花时间研究了一下马敏钊写的 mmz-asio4delphi 感觉很好用,不过深入研究之后,发现一个问题. 马大的这个代码,会产生死链接.   ...

  6. 如何让EasyUI的Tree或者ComboTree节点不显示图标?

    版本:jQuery EasyUI 1.3.2 通过测试,只需把节点的state属性设置为null即可使EasyUI的Tree或者ComboTree控件的节点不显示图标.

  7. B

    baababblebabblerbabebabelbaboonbabybabyhoodBabylonBabylonianbacchanalbacchanalianbachelorbacillusbac ...

  8. 阿里巴巴JAVA开发手册

    Java编程规约 (一)命名风格      1. [强制] 代码中的命名均不能以下划线或美元符号开始,也不能以下划线或美元符号结束.           反例: _name / __name / $O ...

  9. tomcat报异常Invalid character found in method name. HTTP method names must be tokens

    最近监控了一下测试环境的日志,突然出现如下一个异常 由Error parsing HTTP request header可以看出是由于解析请求头出错导致的,但是它属于DEBUG级别的异常,虽然不影响系 ...

  10. 解决Error response from daemon: Get https://registry-1.docker.io/v2/library/hello-world/manifests/

    https://blog.csdn.net/quanqxj/article/details/79479943