题目:

有N堆石子。A B两个人轮流拿,A先拿。每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N及每堆石子的数量,问最后谁能赢得比赛。

例如:3堆石子,每堆1颗。A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子。

Input

第1行:一个数N,表示有N堆石子。(1 <= N <= 1000)

第2 - N + 1行:N堆石子的数量。(1 <= A[i] <= 10^9)

Output

如果A获胜输出A,如果B获胜输出B。

Input示例

3

1

1

1

Output示例

A

分析:

又是一个经典的博弈问题, 对所有的数做 xor 运算, 结果为 0 就是 B, 否则 A;

证明: 点我萌萌哒

实现:

#include <bits/stdc++.h>

using namespace std;

int main() {
int ret , N, tmp;
while(cin >> N) {
for(int i = 1; i <= N; ++i) {
cin >> tmp;
if(i == 1) ret = tmp;
else ret = ret ^ tmp;
}
cout << (ret ? 'A' : 'B') << endl;
}
return 0;
}

51nod--1069 Nim 游戏(博弈论)的更多相关文章

  1. 51NOD 1069 Nim游戏

    1069 Nim游戏   有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出 ...

  2. (博弈论)51NOD 1069 Nim游戏

    有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后 ...

  3. 51Nod 1069 Nim游戏 (位运算)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1069 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆 ...

  4. 51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)

    首先,51nod的那道题就是最简单的尼姆博弈问题. 尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同 ...

  5. 1069 Nim游戏

    1069 Nim游戏 基准时间限制:1 秒 空间限制:131072 KB 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A ...

  6. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

  7. 洛谷.2197.nim游戏(博弈论 Nim)

    题目链接 后手必胜(先手必败,P-position)当且仅当n堆石子数异或和为0. 首先0一定是P-position, 假设a1^a2^a3^...^an=K 若K!=0,则一定可以找到一个ai,ai ...

  8. 51 Nod 1069 Nim游戏

    分析: a1 xor a2 xor a3 ... xor an !=0 则为必胜态 a1 xor a2 xor a3 ... xor an ==0 则为必败态 也就是说只要计算异或值,如果非零则A赢, ...

  9. 51Nod 1069:Nim游戏(尼姆博弈)

    1069 Nim游戏  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走, ...

  10. 博弈论之Nim游戏

    Nim游戏是组合游戏(Combinatorial Games)的一种,属于“Impartial Combinatorial Games”(以下简称ICG). 通常的Nim游戏的定义是这样的:有若干堆石 ...

随机推荐

  1. vue 中使用jquery

    vue-cli搭建的项目 第一种方式:npm 引包的方式 1.安装jquery npm install jquery --save 2.webpack配置 在项目根目录下的build目录下找到webp ...

  2. 在 CentOS 7 中安装 MySQL 8

    准备 本文环境信息: 软件 版本 CentOS CentOS 7.4 MySQL 8.0.x 安装前先更新系统所有包 sudo yum update 安装 1. 添加 Yum 包 wget https ...

  3. js 运行机制

    <script> console.log(1) setTimeout(function(){ console.log(3) },0) console.log(2) </script& ...

  4. Python Revisited Day 13 (正则表达式)

    目录 13.1 Python的正则表达式语言 13.1.1 字符与字符类 13.1.2 量词 {m, n} ? + * 组与捕获 ?:可以关闭捕获 断言与标记 13.2 正则表达式模块 正则表达式模块 ...

  5. PS调出唯美紫蓝色天空背景女生照片

    教你学会用PS给照片叠加素材,达到想要的效果. 首先,作为摄影在拍摄前,我们要明白自己拍摄主题与目的,希望后期达到的效果,尤其是当我们需要后期叠加素材时,脑海中自然而然会有大致画面,就以“夏日”这组为 ...

  6. 如何搭建SVN的客户端和使用

    1.下载安装TortoiseSVN 首先我们需要从官方网站下载TortoiseSVN客户端工具 可以选择32位和64位.也可以直接使用搜索引擎搜索TortoiseSVN 也会出现直接的下载方式.这里不 ...

  7. Git里有些费解的术语和设计

    关于暂存区, 好几个地方都写到了 正在编辑的文件 --> Unchacked/Modified, 而Unchacked/Modified, 的状态也可以叫 to be committed . 这 ...

  8. Oracle篇 之 查询行及概念

    Oracle: s_emp   s_dept  s_region 行:Row(tuple) 列:Column(attribute) conn:改变用户 Drop:删除用户  drop user bri ...

  9. Centos 32位 安装 NodeJS

    准备命令: yum -y install gcc make gcc-c++ openssl-devel wget 下载源码及解压: wget https://nodejs.org/dist/v6.9. ...

  10. 2019/04/06 BJ省选模拟DAY1

    今天好惨啊 \(n*m\)的图手抖打成\(n*n\)的板子 挂了70分 否则并列rk20?[雾] hyc好厉害啊阿克 省队预订了啊 T1 众所周知向量a,b相乘形成一个矩陣 已知一个矩阵 问至少要多少 ...