51nod--1069 Nim 游戏(博弈论)
题目:
有N堆石子。A B两个人轮流拿,A先拿。每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N及每堆石子的数量,问最后谁能赢得比赛。
例如:3堆石子,每堆1颗。A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子。
Input
第1行:一个数N,表示有N堆石子。(1 <= N <= 1000)
第2 - N + 1行:N堆石子的数量。(1 <= A[i] <= 10^9)
Output
如果A获胜输出A,如果B获胜输出B。
Input示例
3
1
1
1
Output示例
A
分析:
又是一个经典的博弈问题, 对所有的数做 xor 运算, 结果为 0 就是 B, 否则 A;
证明: 点我萌萌哒
实现:
#include <bits/stdc++.h>
using namespace std;
int main() {
int ret , N, tmp;
while(cin >> N) {
for(int i = 1; i <= N; ++i) {
cin >> tmp;
if(i == 1) ret = tmp;
else ret = ret ^ tmp;
}
cout << (ret ? 'A' : 'B') << endl;
}
return 0;
}
51nod--1069 Nim 游戏(博弈论)的更多相关文章
- 51NOD 1069 Nim游戏
1069 Nim游戏 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出 ...
- (博弈论)51NOD 1069 Nim游戏
有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N及每堆石子的数量,问最后 ...
- 51Nod 1069 Nim游戏 (位运算)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1069 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆 ...
- 51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)
首先,51nod的那道题就是最简单的尼姆博弈问题. 尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同 ...
- 1069 Nim游戏
1069 Nim游戏 基准时间限制:1 秒 空间限制:131072 KB 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A ...
- BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...
- 洛谷.2197.nim游戏(博弈论 Nim)
题目链接 后手必胜(先手必败,P-position)当且仅当n堆石子数异或和为0. 首先0一定是P-position, 假设a1^a2^a3^...^an=K 若K!=0,则一定可以找到一个ai,ai ...
- 51 Nod 1069 Nim游戏
分析: a1 xor a2 xor a3 ... xor an !=0 则为必胜态 a1 xor a2 xor a3 ... xor an ==0 则为必败态 也就是说只要计算异或值,如果非零则A赢, ...
- 51Nod 1069:Nim游戏(尼姆博弈)
1069 Nim游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走, ...
- 博弈论之Nim游戏
Nim游戏是组合游戏(Combinatorial Games)的一种,属于“Impartial Combinatorial Games”(以下简称ICG). 通常的Nim游戏的定义是这样的:有若干堆石 ...
随机推荐
- 【原创】IDEA一定要改的八条配置
引言 坦白说,我很少写这种操作类型的文章.因为这种文章没啥新意,大家操作步骤肯定是一样的.然而,我答应了我的同事小阳,给她出一篇!毕竟人家打算从Eclipse转IDEA了,于是以示鼓励,写一篇给她! ...
- H5 基于Web Storage 的客户端留言板
<!DOCTYPE html> <html> <head> <meta name="author" content="Yeeku ...
- hMailServer相关视频教程
来源:https://www.hmailserver.org/viewtopic.php?f=4&t=34
- 数据库主键到底是用自增长(INT)好还是UUID好
其实针对使用自增长还是UUID,大家讨论最多的就是速度和存储空间,这里我加入了安全性和分布式,具体对比如下: 使用自增长做主键的优点:1.很小的数据存储空间2.性能最好3.容易记忆使用自增长做主键的缺 ...
- Kafka-python 客户端导致的 cpu 使用过高,且无法消费消息的问题
今天遇到一个情况使用了 Kafka-python 1.3.3 来操作读取 broker 1.0.1 版本的 kafka.出现了 rebalance 之后分配到了客户端,但是 cpu 利用率很高且无法消 ...
- Python 常用模块大全(整理)
https://www.cnblogs.com/jpfss/p/9686050.html
- ElasticSearch6.5.0 【Java客户端之REST Client】
说明 High Level Client 是基于 Low Level Client 的.官方文档如下: * https://www.elastic.co/guide/en/elasticsearch/ ...
- python之OpenCv(五)---抓取摄像头视频图像
OpenCV 可以通过 头videoCapture()方法打开摄像 摄像头变量 = cv2.VideoCapture(n) n为整数,内置摄像头为0,若有其他摄像头则依次为1,2,3,4,... ...
- ZooKeeper-客户端命令 zkCli
执行 bin/zkCli 文件进入客户端 查看帮助 help ZooKeeper -server host:port cmd args stat path [watch] set path data ...
- C#设计模式(17)——观察者模式
1.观察者模式介绍 观察者模式又叫发布-订阅模式,它定义了对象间的一种一对多关系,当一个对象的状态发生改变时,所有依赖于它的对象都会收到通知并被自动更新.观察者模式就四个角色:抽象主题,具体主题,抽象 ...