BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理
BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理
Description
给定方程
X1+X2+. +Xn=M
我们对第l..N1个变量进行一些限制:
Xl < = A
X2 < = A2
Xn1 < = An1
我们对第n1 + 1..n1+n2个变量进行一些限制:
Xn1+l > = An1+1
Xn1+2 > = An1+2
Xnl+n2 > = Anl+n2
求:在满足这些限制的前提下,该方程正整数解的个数。
答案可能很大,请输出对p取模后的答案,也即答案除以p的余数。
Input
输入含有多组数据,第一行两个正整数T,p。T表示这个测试点内的数据组数,p的含义见题目描述。
对于每组数据,第一行四个非负整数n,n1,n2,m。
第二行nl+n2个正整数,表示A1..n1+n2。请注意,如果n1+n2等于0,那么这一行会成为一个空行。
Output
共T行,每行一个正整数表示取模后的答案。
Sample Input
3 1 1 6
3 3
3 0 0 5
3 1 1 3
3 3
Sample Output
6
0
【样例说明】
对于第一组数据,三组解为(1,3,2),(1,4,1),(2,3,1)
对于第二组数据,六组解为(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1)
HINT
n < = 10^9 , n1 < = 8 , n2 < = 8 , m < = 10^9 ,p<=437367875
对于l00%的测试数据: T < = 5,1 < = A1..n1_n2 < = m,n1+n2 < = n
如果没有限制,方程解的个数就是$m$个球$(n-1)$个板不能为空的方案数即$C(m-1,n-1)$。
现在有了两个限制,但第二个限制可以直接在$m$上进行处理对于$A_i$,从$m$中减掉$A_i-1$即可。
第一个限制特别少,我们可以容斥一下。
转化成求总方案数-有一个不满足的方案数+有两个不满足的方案数.......
不满足的方案数也是在$m$上进行处理。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long ll;
int n,n_1,n_2,m,A[100];
ll mods[100050],ks[100050],MOD,fac[100050];
ll qp(ll x,ll y,ll mod) {
ll re=1;for(;y;y>>=1ll,x=x*x%mod) if(y&1ll) re=re*x%mod; return re;
}
void exgcd(ll a,ll b,ll &x,ll &y,ll &p) {
if(!b) {p=a; x=1; y=0; return ;}
exgcd(b,a%b,y,x,p); y-=a/b*x;
}
ll INV(ll a,ll b) {
ll x,y,d;
exgcd(a,b,x,y,d);
return d==1?(x%b+b)%b:-1;
}
ll Fac(ll x,ll p,ll pk) {
if(!x) return 1;
return qp(fac[pk],x/pk,pk)*fac[x%pk]%pk*Fac(x/p,p,pk)%pk;
}
ll C(ll x,ll y,ll p,ll pk) {
if(x<y) return 0;
ll i,re=0;
for(i=x;i;i/=p) re+=i/p;
for(i=y;i;i/=p) re-=i/p;
for(i=x-y;i;i/=p) re-=i/p;
re=qp(p,re,pk);
if(!re) return 0;
for(fac[0]=1,i=1;i<=pk;i++) fac[i]=i%p?fac[i-1]*i%pk:fac[i-1];
return re*Fac(x,p,pk)%pk*INV(Fac(y,p,pk),pk)%pk*INV(Fac(x-y,p,pk),pk)%pk;
}
ll crt(ll x,ll y) {
ll ans=0;int i;
for(i=1;i<=mods[0];i++) {
ll Mi=MOD/ks[i],Ai=C(x,y,mods[i],ks[i]),Ti=INV(Mi,ks[i]);
ans=(ans+Mi*Ai%MOD*Ti%MOD)%MOD;
}
return ans;
}
void solve() {
int mask=(1<<(n_1))-1;
int i,j;
ll ans=0;
for(i=n_1+1;i<=n_1+n_2;i++) {
m-=(A[i]-1);
}
//printf("m=%d\n",m);
for(i=0;i<=mask;i++) {
ll re=0;
int cnt=0;
for(j=1;j<=n_1;j++) {
if(i&(1<<j-1)) {
cnt++; re+=(A[j]);
}
}
//printf("cnt=%d,i=%d,%lld %lld\n",cnt,i,m-re-1,n-1);
ll tmp=crt(m-re-1,n-1);
if(cnt&1) {
ans=(ans-tmp+MOD)%MOD;
}else {
ans=(ans+tmp)%MOD;
}
}
printf("%lld\n",ans);
}
int main() {
int T;
scanf("%d%lld",&T,&MOD);
int i; ll j=MOD;
for(i=2;1ll*i*i<=j;i++) {
if(j%i==0) {
mods[++mods[0]]=i; ks[mods[0]]=1;
while(j%i==0) j/=i,ks[mods[0]]*=i;
}
}
if(j!=1) mods[++mods[0]]=ks[mods[0]]=j;
while(T--) {
scanf("%d%d%d%d",&n,&n_1,&n_2,&m);
for(i=1;i<=n_1+n_2;i++) {
scanf("%d",&A[i]);
}
solve();
}
}
BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理的更多相关文章
- bzoj3129[Sdoi2013]方程 exlucas+容斥原理
3129: [Sdoi2013]方程 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 582 Solved: 338[Submit][Status][ ...
- bzoj千题计划267:bzoj3129: [Sdoi2013]方程
http://www.lydsy.com/JudgeOnline/problem.php?id=3129 如果没有Ai的限制,就是隔板法,C(m-1,n-1) >=Ai 的限制:m减去Ai &l ...
- BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学
BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学 Description 约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛, ...
- BZOJ_4517_[Sdoi2016]排列计数_组合数学
BZOJ_4517_[Sdoi2016]排列计数_组合数学 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[ ...
- 【BZOJ3129】[SDOI2013]方程(容斥,拓展卢卡斯定理)
[BZOJ3129][SDOI2013]方程(容斥,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 因为答案是正整数,所先给每个位置都放一个就行了,然后\(A\)都要减一. 大于的限制和没有的区别不大, ...
- HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)
HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...
- UVA.10325 The Lottery (组合数学 容斥原理 二进制枚举)
UVA.10325 The Lottery (组合数学 容斥原理) 题意分析 首先给出一个数n,然后给出m个数字(m<=15),在[1-n]之间,依次删除给出m个数字的倍数,求最后在[1-n]之 ...
- UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)
UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...
- BZOJ_3124_[Sdoi2013]直径_树形DP
BZOJ_3124_[Sdoi2013]直径_树形DP Description 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵 ...
随机推荐
- eclipse下载指南
官网下载地址 下载https://www.eclipse.org/downloads/ 官网https://www.eclipse.org/ 最新版本 Eclipse OXYGEN Eclipse O ...
- Construct Binary Tree from Inorder and Postorder Traversal(根据中序遍历和后序遍历构建二叉树)
根据中序和后续遍历构建二叉树. /** * Definition for a binary tree node. * public class TreeNode { * int val; * Tree ...
- Spring定时任务(一):SpringTask使用
背景:在日常开发中,经常会用到任务调度这类程序.实现方法常用的有:A. 通过java.util.Timer.TimerTask实现. B.通过Spring自带的SpringTask. C. 通过Spr ...
- P3370 【模板】字符串哈希
题目描述 如题,给定N个字符串(第i个字符串长度为Mi,字符串内包含数字.大小写字母,大小写敏感),请求出N个字符串中共有多少个不同的字符串. 输入输出格式 输入格式: 第一行包含一个整数N,为字符串 ...
- Jmeter4.0版本实现背景色切换
今天下载了Jmeter4.0新版本,看着这高大上的黑曜石般的界面,着实不适应. 尤其是在右击,希望enable和disable一个线程组时候,老眼昏花,不太看得清楚哪一个是灰色的不能点击 花了时间看了 ...
- WSGI及gunicorn指北(二)
pyg0已经大概了解了wsgi.现在他决定深入探索他们实际在生产环境里用到的web 服务器 -gunicorn. 先来看看官网的介绍:Gunicorn 是一个运行在Unix上的python WSGI ...
- element.dispatchEvent is not a function的解决
Firebug中的出错提示: element.dispatchEvent is not a function element.dispatchEvent(event); prototype.js (第 ...
- Using SSH and SFTP in Mac OS X
http://answers.stat.ucla.edu/groups/answers/wiki/7a848/ SH and SFTP are command line applications av ...
- java之jsp实现动态网页
动态页面,说白了,就是根据一定的信息(条件)去改变呈现给用户的内容. 而这里所提到的一定的信息,通常就是指,在一个表单中用户所输入的信息. 先来看一个我们常见的用户登录界面吧. 在这里我们可以看到一共 ...
- Spring4托管Hibernate5并利用HibernateTemplate进行数据库操作
时隔半年,再次发布配置类的相关Blog,因为左手受伤原因先做一个简述. 首先利用idea创建一个Spring+SpringMVC+Hibernate项目,注意的是因为我们要完全放弃Hibernate以 ...