BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
Description

Input
输入文件包含多组测试数据。
Output
T行,每行一个整数,表示你所求的答案。
Sample Input
7 4
5 6
Sample Output
121
HINT
1<=N, M<=50000
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 50050
using namespace std;
ll f[N];
int prime[8080],cnt,miu[N],s[N];
bool vis[N];
void init() {
int i,j;
miu[1]=s[1]=1;
for(i=2;i<=50000;i++) {
if(!vis[i]) {
prime[++cnt]=i;
miu[i]=-1;
}
for(j=1;j<=cnt&&i*prime[j]<=50000;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) {
miu[i*prime[j]]=0;
break;
}
miu[i*prime[j]]=-miu[i];
}
s[i]=s[i-1]+miu[i];
}
int lst;
for(i=1;i<=50000;i++) {
for(j=1;j<=i;j=lst+1) {
lst=i/(i/j); f[i]+=1ll*(lst-j+1)*(i/j);
}
}
}
ll calc(ll n,ll m) {
ll i,lst,r=min(n,m),ans=0;
for(i=1;i<=r;i=lst+1) {
lst=min(n/(n/i),m/(m/i));
ans+=(s[lst]-s[i-1])*f[n/i]*f[m/i];
}
return ans;
}
int main() {
init();
int T;
ll n,m;
scanf("%d",&T);
while(T--) {
scanf("%lld%lld",&n,&m);
printf("%lld\n",calc(n,m));
}
}
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演的更多相关文章
- P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)
P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...
- 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)
3994: [SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...
- 【BZOJ3994】[SDOI2015] 约数个数和(莫比乌斯反演)
点此看题面 大致题意: 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^N\sum_{j=1}^Md(i·j)\). 莫比乌斯反演 这是一道莫比乌斯反演题. 一个重要的性质 首先 ...
- 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...
- 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...
- 【BZOJ3994】约数个数和(莫比乌斯反演)
[BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\ ...
- BZOJ3994:约数个数和(莫比乌斯反演:求[1,N]*[1,M]的矩阵的因子个数)
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Outpu ...
- 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...
- 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)
题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...
随机推荐
- Spring Boot 添加jersey-mvc-freemarker依赖后内置tomcat启动不了解决方案
我在我的Spring Boot 项目的pom.xml中添加了jersey-mvc-freemarker依赖后,内置tomcat启动不了. 报错信息如下: org.springframework.con ...
- MySQL性能调优——索引详解与索引的优化
--索引优化,可以说是数据库相关优化.理解尤其是查询优化中最常用的优化手段之一.所以,只有深入索引的实现原理.存储方式.不同索引间区别,才能设计或使用最优的索引,最大幅度的提升查询效率! 一.BTre ...
- [转]FFMpeg框架代码阅读
简介 FFmpeg是一个集录制.转换.音/视频编码解码功能为一体的完整的开源解决方案. FFmpeg的开发是基于Linux操作系统,但是可以在大多数操作系统中编译和使用.FFmpeg支持MPEG.Di ...
- Flipping Parentheses~Gym 100803G
Description A string consisting only of parentheses '(' and ')' is called balanced if it is one of t ...
- remove the nth node from the end of the list
problem description: remove the nth node from the end of the list for example: given: 1->2->3 ...
- Vue.js与Jquery的比较 谁与争锋 js风暴
普遍认为jQuery是适合web初学者的起步工具.许多人甚至在学习jQuery之前,他们已经学习了一些轻量JavaScript知识.为什么?部分是因为jQuery的流行,但主要是源于经验开发人员的一个 ...
- mybatis源码解读(四)——事务的配置
上一篇博客我们介绍了mybatis中关于数据源的配置原理,本篇博客介绍mybatis的事务管理. 对于事务,我们是在mybatis-configuration.xml 文件中配置的: 关于解析 < ...
- hadoop中setup,cleanup,run和context讲解
hadoop 执行中的setup run cleanup context的作用1.简介1) setup(),此方法被MapReduce框架仅且执行一次,在执行Map任务前,进行相关变量或者资源的集中初 ...
- jieba库分词
(1)团队简介的词频统计 import jieba import collections s="制作一个购票小程序,这个购票小程序可以根据客户曾经的购票历史" s+="和 ...
- Java 算法(二)
[程序9] 题目:一个数如果恰好等于它的因子之和,这个数就称为"完数".例如6=1+2+3.编程找出1000以内的所有完数 //第一种public class A09 {publi ...