BZOJ_4439_[Swerc2015]Landscaping_最小割

Description

FJ有一块N*M的矩形田地,有两种地形高地(用‘#’表示)和低地(用‘.’表示)
FJ需要对每一行田地从左到右完整开收割机走到头,再对每一列从上到下完整走到头,如下图所示
 
对于一个4*4的田地,FJ需要走8次。
收割机是要油的,每次从高地到低地或从低地到高地需要支付A的费用。
但是FJ有黑科技,可以高地与低地的互变,都只需要一个支付B的费用。
询问FJ需要支付最小费用。

Input

第一行包含四个整数N,M,A,B,意义如上文所述。
接下来是一个N*M的字符串矩阵,表示农田的地形,’#’表示高地,’.’表示低地。

Output

只包含一个正整数,表示最小费用。
1<=N,M<=50
1<=A,B<=100000

Sample Input

5 4 1000 2000
...#
#..#
...#
##..
###.

Sample Output

11000
样例解释:
把(2,1)的高地变成低地花费2000,燃料花费9000


用最小割的思想。

S->高地(B) 低地->T(B),割这些边表示一开始将高低互换。

然后对于每个点向四周连边(A),割这个表示支付A从而改变与四周的联系,可以理解为边是双向的。

求最小割即可。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 3050
#define M 300050
#define S (n*m+1)
#define T (n*m+2)
#define inf 100000000
#define p(i,j) ((i-1)*m+j)
int head[N],to[M],nxt[M],flow[M],cnt=1,n,m,dep[N],Q[N],l,r;
inline void add(int u,int v,int f) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0;
}
bool bfs() {
memset(dep,0,sizeof(dep));
dep[S]=1; l=r=0; Q[r++]=S;
while(l<r) {
int x=Q[l++],i;
for(i=head[x];i;i=nxt[i]) {
if(!dep[to[i]]&&flow[i]) {
dep[to[i]]=dep[x]+1;
if(to[i]==T) return 1;
Q[r++]=to[i];
}
}
}
return 0;
}
int dfs(int x,int mf) {
if(x==T) return mf;
int nf=0,i;
for(i=head[x];i;i=nxt[i]) {
if(dep[to[i]]==dep[x]+1&&flow[i]) {
int tmp=dfs(to[i],min(mf-nf,flow[i]));
if(!tmp) dep[to[i]]=0;
nf+=tmp;
flow[i]-=tmp;
flow[i^1]+=tmp;
if(nf==mf) break;
}
}
return nf;
}
void dinic() {
int ans=0,f;
while(bfs()) while(f=dfs(S,inf)) ans+=f;
printf("%d\n",ans);
}
char s[60];
int main() {
int A,B,i,j;
scanf("%d%d%d%d",&n,&m,&A,&B);
for(i=1;i<=n;i++) {
scanf("%s",s+1);
for(j=1;j<=m;j++) {
if(s[j]=='#') {
add(S,p(i,j),B);
}else {
add(p(i,j),T,B);
}
}
}
for(i=1;i<=n;i++) {
for(j=1;j<=m;j++) {
if(i>1) add(p(i,j),p(i-1,j),A);
if(i<n) add(p(i,j),p(i+1,j),A);
if(j>1) add(p(i,j),p(i,j-1),A);
if(j<m) add(p(i,j),p(i,j+1),A);
}
}
dinic();
}

BZOJ_4439_[Swerc2015]Landscaping_最小割的更多相关文章

  1. bzoj 4439: [Swerc2015]Landscaping -- 最小割

    4439: [Swerc2015]Landscaping Time Limit: 2 Sec  Memory Limit: 512 MB Description FJ有一块N*M的矩形田地,有两种地形 ...

  2. 【BZOJ4439】[Swerc2015]Landscaping 最小割

    [BZOJ4439][Swerc2015]Landscaping Description FJ有一块N*M的矩形田地,有两种地形高地(用‘#’表示)和低地(用‘.’表示) FJ需要对每一行田地从左到右 ...

  3. 【bzoj4439】[Swerc2015]Landscaping 网络流最小割

    题目描述 FJ有一块N*M的矩形田地,有两种地形高地(用‘#’表示)和低地(用‘.’表示) FJ需要对每一行田地从左到右完整开收割机走到头,再对每一列从上到下完整走到头,如下图所示 对于一个4*4的田 ...

  4. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  5. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  6. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  7. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  8. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  9. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

随机推荐

  1. 我对AOP的理解

    1.问题 问题:想要添加日志记录.性能监控.安全监测 2.最初解决方案 2.1.最初解决方案 缺点:太多重复代码,且紧耦合 2.2.抽象类进行共性设计,子类进行个性设计,此处不讲解,缺点一荣俱荣,一损 ...

  2. java Map遍历

    http://www.cnblogs.com/fczjuever/archive/2013/04/07/3005997.html 1. 阐述 对于Java中Map的遍历方式,很多文章都推荐使用entr ...

  3. 并发编程(五):CAS

    在atomic包中,大多数类都是借助unsafe类来实现的,如以下代码 public static AtomicInteger count = new AtomicInteger(0); privat ...

  4. Git分支创建与合并

    分支管理是Git支持多人协作和版本控制的关键,参照廖雪峰对Git的介绍,对真实开发环境中Git的使用结合实践进行梳理. 摘自:廖雪峰的官方网站 在实际开发中,我们应该按照几个基本原则进行分支管理: 首 ...

  5. 发布开源库到JCenter所遇到的一些问题记录

    这周末自己瞎折磨了下,如何发布开源库到 JCenter,然后这过程中碰到了一些问题,在此记录分享一下 本篇是基于上一篇:教你一步步发布一个开源库到 JCenter 介绍的流程.步骤中所遇到的问题,所以 ...

  6. 利用HTML5,前端js实现图片压缩

    http://blog.csdn.NET/qazwsx2345/article/details/21827553 主要用了两个HTML5的 API,一个file,一个canvas,压缩主要使用cnav ...

  7. React+ANTD项目使用后的一些关于生命周期比较实用的心得

    1. constructor() constructor(props){ super(props) this.state=({ }) } 一定先写super  可以接收从父组件传来的值 父组件往子组件 ...

  8. 对JavaScript事件机制的一点理解

    JavaScript通过事件机制实现了异步操作,这种异步操作可以使CPU可以在IO任务的等待中被释放出来处理其他任务,等待IO结束再去处理这个任务.这个是一个基本的事件机制. 那么是不是说事件从监听到 ...

  9. HTML学习笔记6:列表标签

    列表标签     什么是列表标签呢? 以平台区分有什么游戏? 手游 pc游戏 家用机游戏 掌机游戏 以游戏类型区分有什么游戏? RPG ARPG MMORPG ACT FPS 以上两种就是一种列表标签 ...

  10. Redis未授权访问

    最近在做校招题目的时候发现有问到未授权访问,特此搭建了诸多未授权访问的环境并且一一复现并做简单总结.再次记录下来 环境介绍 0x00环境搭建 我这里用到的是Microsoft(R) Windows(R ...